TECHNISCHE UNIVERSITEIT EINDHOVEN

Faculty of Mathematics and Computer Science Introduction to Cryptology, Monday 22 January 2018

Name:

TU/e student number :

Exercise	1	2	3	4	5	6	total
points							

Notes: Please hand in this sheet at the end of the exam. You may keep the sheet with the exercises.

This exam consists of 6 exercises. You have from 13:30-16:30 to solve them. You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on TU/e letterhead; should you require more sheets ask the proctor. State your name on every sheet.

Do not write in red or with a pencil.

You are not allowed to use any books, notes, or other material.

You are allowed to use a simple, non-programmable calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This exercise is about LFSRs. Do the following subexercises for the sequence

$$s_{i+5} = s_{i+4} + s_i.$$

- (a) Draw the LFSR corresponding this sequence. 2 points
- (b) State the characteristic polynomial f and compute its factorization. You do not need to do a Rabin irreducibility test but you do need to argue why a factor is irreducible. 12 points
- (c) For each of the factors of f compute the order. 8 points

(d) What is the longest period generated by this LFSR?

Make sure to justify your answer.

3 points

- (e) State the lengths of all subsequences so that each state of n bits appears exactly once.Make sure to justify your answer.8 points
- 2. This exercise is about modes. Here is a schematic description of the CBC (Cipher Block Chaining) mode.

Cipher Block Chaining (CBC) mode encryption

[Picture by White Timberwolf, public domain]

This encryption uses a block cipher of block size b. Let $\operatorname{Enc}_k(m)$ denote encryption of a single block m using this block cipher with key k and let $\operatorname{Dec}_k(c)$ denote decryption of a single block c using the block cipher with key k. Let IV be the initialization vector of length b, let m_i be the b-bit strings holding the message and c_i be the b-bit strings holding the ciphertexts.

- (a) Describe how encryption and decryption of long messages work, i.e., write c_0, c_1 , and a general c_i in terms of IV, m_0, m_1, m_i , and (if necessary) other m_j and c_j ; and write m_0, m_1 , and a general m_i in terms of IV, c_0 , c_1 , c_i , and (if necessary) other m_j and c_j .
- (b) Ciphertexts are received with explicit sequence numbers (i, c_i) . Assume that ciphertext c_j gets modified in transit. Show which messages get decrypted incorrectly. 4 points
- 3. This problem is about RSA encryption.
 - (a) Alice's public key is (n, e) = (13231, 7). Encrypt the message m = 234 to Alice using schoolbook RSA (no padding).

6 points

(b) Let p = 449 and q = 569. Compute the public key using e = 3 and the corresponding private key. **Reminder:** The private exponent d is a positive number.

6 points

- 4. This problem is about the DH key exchange. The public parameters are that the group is $(\mathbb{F}_{971}^*, \cdot)$ and that it is generated by g = 11.
 - (a) Compute the public key belonging to the secret key b = 18.
 - (b) Alice's public key is $h_a = 473$. Compute the shared DH key with Alice using b from the previous part. 8 points
- 5. The integer p=17 is prime. You are the eavesdropper and know that Alice and Bob use the Diffie-Hellman key-exchange in \mathbb{F}_{17}^* with generator g=3. Alice's public key is $h_a=g^a=11$. Use the Baby-Step Giant-Step method to compute Alice's private key a. Verify your result, i.e. compute g^a .

6. The ANSI X9.17/X9.31 random number generator (RNG) produces pseudorandom numbers using a block cipher. Outputs are blocks of b bits, where b is the block size of the block cipher.

An implementation of this RNG has a secret key k for the block cipher hard coded in the system and maintains an internal state S_i that it updates after every output block. A second input to the RNG is a sequence of time stamps T_1, T_2, T_3, \ldots , where each output block uses one of the time stamps and each time stamp is a b-bit value.

The system starts with an initial state S_0 and the key k, each having b bits.

To compute the first output block, the system first computes an intermediate value $I_1 = \operatorname{Enc}_k(T_1)$ and then computes the first output block $O_1 = \operatorname{Enc}_k(I_1 \oplus S_0)$, where as usual \oplus denotes bitwise xor, i.e., addition in \mathbb{F}_2^b . Finally, the internal state is updated to $S_1 = \operatorname{Enc}_k(O_i \oplus I_1)$.

In general, to compute the *i*-th output block, the system computes the *i*-th intermediate value $I_i = \operatorname{Enc}_k(T_i)$, the *i*-th output block $O_i = \operatorname{Enc}_k(I_i \oplus S_{i-1})$, and the *i*-th state $S_i = \operatorname{Enc}_k(O_i \oplus I_i)$.

- (a) Draw a diagram of the data flow in the ANSI X9.17/X9.31 RNG, showing output values, state, and intermediate values.
- (b) State the output O_1 in terms of T_1, S_0 , and k. 2 points
- (c) State the output O_i in terms of T_i, S_{i-1} , and k. 2 points
- (d) Many implementations of ANSI X9.17/X9.31 use the same fixed key k. The state values S_i differ per device. Show how to recover S_1 given output O_1 , time stamp T_1 and the key k. 4 points
- (e) Show how to recover S_0 from O_i , key k, and time stamps $T_1, T_2, T_3, \ldots, T_i$.
- (f) The previous parts assumes exact knowledge of T_1 . Assume that you have captured O_1 and O_2 at times T'_1 and T'_2 close to T_1 and T_2 . Find a relation between O_1, O_2, T_1 , and T_2 , so that you can test for the correct times by searching around T'_i . 4 points