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Preface

In the present thesis, we study the classical and the relativistic (secular) dynamics of some extrasolar
planetary systems consisting of two non-resonant coplanar planets. The aim is to evaluate how
General Relativity (GR) affects the orbital dynamics of some extrasolar systems, in the limit of
point masses, by means of numerical and semi-analytical integrations of the equations of motion.

An extra-solar planet, or exoplanet, is a planet in an orbit around a star different from the
Sun. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995. Since
then the number of extrasolar planets did not cease to grow and today more than a thousand such
planets have been discovered.

For the discovery of these exoplanets, many teams have used many techniques like in particular
radial velocity measurements, transit method, astrometry and direct imaging. As the discoveries
are recent and many of the discovery planets are at the edge of observational capabilities, the
uncertainties on their orbital elements and masses are large.

In the current state of art, we are just capable of discovering big planets with not large periods.
Therefore, the planets so far discovered have large masses (about three quart have masses in the
range 0.15−11 MJ) and most of them have orbits close to the central stars. In particular, about half
of them are orbiting their host star much closer than Mercury orbits the Sun (0.39 AU). Another
characteristic is the large eccentricities of more of them. Indeed, in contrast to the Solar system
where the orbits of the planets are almost circular, the exoplanets usually describe true ellipses
with high eccentricities. In particular, more than one third have significantly elliptical orbits, with
e > 0.3, compared with the largest eccentricities in our Solar system, of about 0.2 for Mercury and
0.05 for Jupiter. Thus, the architectures of the extrasolar systems are diverse and, usually, very
different from the Solar system configuration.

The recent discoveries of extrasolar planets provide us with a new ensemble of planetary systems
to study relativistic effects. Indeed, except for very precise simulations, in the study of the dynamics
of Solar system we just deal with Newtonian mechanics and the relativistic effects are in general
not taken into account in orbit computations. The effects of relativity are in fact so small as not
to worry about it and furthermore the perturbations due to the larger asteroids are almost always
much more significant. Moreover, when the relativistic effects are taken into account, only the
effects due to the Sun are considered and, also in this case, the secular relativistic effects generated
by the Sun are appreciable only for the argument of the perihelion and mean anomaly of the inner
Solar system. In particular, the most famous example of a situation where “relativity is important”
for orbit computations is the precession of the orbit of Mercury.

Conversely, by virtue of their small semi-major axes and high eccentricities, extrasolar planetary
systems with multiple planets allow for General Relativity to exhibit much more pronounced effects
than in the case of the Solar system. Due to the characteristics of extrasolar systems, the relativistic
corrections due to the star (and in some particular cases the relativistic effects generated by the
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planets) are in fact important and, in some cases, are indispensable (specially when semi-major
axis are of the order of 10−1 AU or less) for orbits computation. As a result, these systems provide
a new test of General Relativity.

The first aim of this thesis is to perform an extensive comparison between the classical and the
relativistic (secular) dynamics of some extrasolar planetary systems consisting of two non-resonant
coplanar planets, by a numerical integrations of the equations of motion.

In particular, we are interested in the first corrections to the classical Newtonian equations of
motion of a system of point masses, as derived from the GR. They can be found by means of an
approximation of this last theory in the case of weak gravitational fields and low velocities, known
as the Post Newtonian approximation. This approximation can be accomplished by making an
expansion of the GR equations in terms of v/c, where v are the velocities and c is the speed of
light. The PN Hamiltonian of an isolated system of point masses include the Newtonian term
and a number of other terms which are suppressed by factors of 1/c. The equations of motion
corresponding to this Hamiltonian are known as the Einstein-Infeld-Hoffman equations, and their
first version is found in Einstein et al. (1938).

As expected, the results of numerical integration show that relativistic corrections become very
important for systems with the innermost planet close to the star, with the other body relatively
distant. Moreover, we note that the relativistic corrections seem to provide “stability” to the
system, in the cases in which they are important.

The numerical integration of the equations of motion corresponding to the PN Hamiltonian is
greatly slow, and it is useful only in situations where the relativistic contribution of every object
in the system is to be taken into account. For these reasons, the second aim is to introduce an
approximate model of the relativistic Hamiltonian that takes into account the main relativistic
effects and that decreases considerably the calculation time. In particular, the PN Hamiltonian can
be greatly simplified in the case in which only one object (e.g. the central star) contributes with
relevant corrections, skipping the relativistic correction due to the mutual interactions of the two
planetary masses.

The simplified relativistic Hamiltonian, although less exact than the PN Hamiltonian, is com-
putationally much more affordable and, as we will show, the dynamic described by the simplified
Hamiltonian is very similar to the real one, at least numerically in the systems that we have con-
sidered.

On the other hand, the major defect of the numerical integration is that it is CPU consuming
and that the time required to integrate a system is very long. The third aim of this thesis is
therefore to reconstruct the evolution of the eccentricities (and pericenters) of the planets by using
analytical techniques, both in the classical than in the (simplified) relativistic case, extending the
Laplace-Lagrange theory.

The classical Laplace-Lagrange theory for the secular motions of the planetary orbits uses the
circular approximation as a reference for the orbits and it is based only on a linear approximation of
the dynamical equations. Because the orbits of the planets in Solar system are almost circular while
the exoplanets usually describe true ellipses with high eccentricities, the applicability of the classical
approach, using the circular approximation as a reference, can be doubtful for these systems.

Previous works of Libert & Henrard (2005, 2006) for coplanar systems have generalized the
classical expansion of the perturbation potential to a higher order in the eccentricities, showing
that this analytical model gives an accurate description of the behavior of planetary systems which
are not close to a mean-motion resonance, up to surprisingly high eccentricities. Moreover, they
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have shown that an expansion up to order 12 in the eccentricities is usually required for reproducing
the secular behavior of extrasolar planetary systems. These results have been obtained considering
a secular Hamiltonian at order one in the masses.

In order to study the Hamiltonians with the classical perturbation theory, we rewrite the classical
and the (simplified) relativistic Hamiltonian using the Poincaré variables. Then we simplify the two
Hamiltonians using the averaging principle, which corresponds to fixing the values of the semi-major
axes. It is important to remember that, because we consider only non-resonant extrasolar systems,
using the averaging principle we can still obtain qualitative information on the long-term changes
of the slowly varying orbital elements. Finally, following the works of Libert and Henrand, we
study the classical and the relativistic secular Hamiltonian using the modern perturbation method
based on the Lie series and on the Birkhoff’s normal form. This approach allows us to derive a
fully-analytical description of the system using semi-automatized computer algebra.

To validate our results, we compare our semi-analytical integration with the direct numerical
integration. In particular, we find that the agreement between the results obtained with the two
methods is excellent.

Furthermore, evaluating the difference between the quadratic part of the secular classical Hamil-
tonian and of the secular relativistic Hamiltonian, we have set up a simple (and rough) criterion to
discriminate a priori between the cases in which the relativistic corrections are important from those
in which they are not (in the case of a coplanar non-resonant three-body system). In particular,
our way to quantify the efficacy of GR on the i-th planet is through the dimensionless parameter

c2a2
im1m2

Ga2m0mi(m0 +mi)

[
3
8

(
a1
a2

)2
+ 45

64

(
a1
a2

)4
+ 525

512

(
a1
a2

)6
]
,

where we use the index 1 to indicate the innermost planet and the index 2 to indicate the outer
planet (see chapter 6 for more details).

The thesis is organized as follows. Chapter 1 is dedicated to an overview of Celestial mechanics
and in particular of the orbital elements, i.e. the quantities that characterize the geometrical
property of the orbital ellipse and the position on the ellipse with respect to a fixed reference system.
In chapter 2, after a few recalls of General Relativity, we derive the Post Newtonian Hamiltonian,
starting from the Einstein equation. To do this, we follow in particular the work of Einstein
et al. (1938) and Landau et al. (1971). Then, in chapter 3, we study numerically the dynamics
described by the classical and relativistic Hamiltonian for some extrasolar systems. The results show
how relativistic effects can accumulate over time to induce substantial changes in the dynamics.
Then, we derive the simplified relativistic Hamiltonian and we compare numerically the dynamics
described by the real and the simplified relativistic Hamiltonian. In chapter 4 are given the tools
provided by Hamiltonian’s theory and by perturbation theory, that we will use in following chapters.
In particular, we present the construction of the Poincaré variables, the averaging principle and
the modern perturbation method based on the Lie series and on the Birkhoff’s normal form for the
study of an isochronous Hamiltonian. In chapter 5 we present a method for the expansion of the
classical and relativistic Hamiltonian in planar Poincaré variables, which can be implemented in a
straightforward manner on a computer. Following the Lagrange approach, we focus, in chapter 6,
on the secular part of the Hamiltonians and we construct a high-order Birkhoff normal form, using
the Lie series method, that leads to a very simple form of the equations of motion, being function
of the actions only. We apply this method on systems previously studied and we compare our semi-
analytical integration with the direct numerical integration. Finally we set up a simple criterion
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to discriminate between the cases in which the relativistic corrections are important from those
in which they are not. An appendix containing a summary of differential geometry and another
containing the definition of the Hansen coefficients follow.
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Chapter 1

Celestial mechanics

Celestial mechanics is the branch of astronomy that deals with the motions of celestial objects.
Johannes Kepler was the first to formulate three scientific laws describing orbital motion, originally
formulated to describe the motion of planets around the Sun. He worked as an assistant to the
Danish astronomer Tycho Brahe. Brahe took extraordinarily accurate measurements of the motion
of the planets of the Solar System. From these measurements, Kepler was able to formulate Kepler’s
laws, which are:

First law: Each planet moves, relative to the Sun, in an elliptical orbit, with the Sun at one of
the two foci of the ellipse.

Second law: The rate of motion in the elliptical orbit is such that the vector pointing to the
position of the planet relative to the Sun spans equal areas of the orbital plane in equal times.

Third law: The square of the orbital period T is proportional to the cube of the semi-major axis
a of the orbital ellipse.

Kepler published the first two laws in 1609 and the third law in 1619.
Nearly a century later, Isaac Newton had formulated his three laws of motion. They describe

the relationship between the forces acting upon a body and its motion in response to said forces.
They can be summarized as follows:

First law: When viewed in an inertial reference frame, an object either is at rest or moves at a
constant velocity, unless acted upon by an external force.

Second law: The acceleration of a body is directly proportional to, and in the same direction as,
the net force acting on the body, and inversely proportional to its mass:

F = dp
dt = m

dv
dt = ma.

Third law: (Principle of action and reaction) When one body exerts a force on a second body,
the second body simultaneously exerts a force equal in magnitude and opposite in direction
to that of the first body.

Newton also posed the question of what force produces the elliptical orbits seen by Kepler.
He came to formulate his law of universal gravitation, which is the first correct scientific and
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mathematical formulation of gravity. Newton’s law of universal gravitation states that every point
mass in the universe attracts every other point mass with a force that is directly proportional to
the product of their masses and inversely proportional to the square of the distance between them.
Mathematically

F1,0(x0,x1) = G m0m1
‖ x1 − x0 ‖3

(x0 − x1) (1.1)

where F is the force with which the object 0 is attracted by the object 1, G is the gravitational
constant (G = 6.67× 10−11 N m2 Kg−2), m0 and m1 are the two masses and x0 and x1 denote the
position vectors of two bodies in an inertial reference frame.1 Given this force law and his equations
of motion, Newton was able to show that two point masses attracting each other would each follow
perfectly elliptical orbits.

1.1 The two-body problem
According to Newton’s theory of gravitation, the equations of motion of an isolated system of two
bodies having spherical symmetry and mass m0 and m1 are

d2x0
dt2 = Gm1

‖ x1 − x0 ‖3
(x1 − x0) d2x1

dt2 = Gm0
‖ x1 − x0 ‖3

(x0 − x1) (1.2)

where, as before, x0 and x1 denote the position vectors of the two bodies in an inertial reference
system.

Denoting by r = x1 − x0 the relative position of the bodies and with s = m0x0+m1x1
m0+m1

the
barycenter of the system, the two vectorial equations above can be reduced to two separate vectorial
equation:

d2r
dt2 = −Gm0 +m1

‖ r ‖3 r,

d2s
dt2 = 0.

(1.3)

The first equation describes a central force problem, while the second shows that the velocity of
the center of mass is constant.

1.1.1 Central force problem

We are now reduced to determine the motion of a particle under the influence of a single central
force:

µr̈ = F(r) (1.4)

where the force F(r) is directed as r (i.e. r× F = 0) and µ is the reduced mass defined as

µ =
( 1
m0

+ 1
m1

)−1
= m0m1
m0 +m1

. (1.5)

It can be proven that the motion of a particle under a central force F always remains in the
plane defined by its initial position and velocity, and that the areal velocity respect to the center

1For simplicity, I will adopt the vectorial formalism, denoting by x the n-uples x1, x2, ...xn. Moreover, I will denote
by α̇ the time derivative of a generic variable α.
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is constant. To prove this mathematically, it is sufficient to show that the angular momentum
M = r × µṙ of the particle is constant (i.e. M is a first integral, or a constant of motion). Since
the motion is planar and the force radial, it is customary to choose a reference system such that
the axis z is oriented as M, so that the motion happen in the plane x, y. Moreover, it’s convenient
to switch to polar coordinates r, θ with the transformation x = r cos θ and y = r sin θ.

Since F = ma by Newton’s second law of motion and since F is a central force, then only the
radial component of the acceleration a can be non-zero. In the orbital plane, the system (1.3)
becomes

µ(r̈ − rθ̇2) = F

d
dt(µr

2θ̇) = 0,
(1.6)

where F is the radial component of the force F.
To solve the problem, we introduce the new variable w = 1/r. With this new variable the

system (1.6) becomes

d2w

dθ2 + w = − µF

L2w2 ,

θ̇ = L

µ
w2,

(1.7)

where L is the component of the angular momentum M along axis z. The first equation describe
the orbit in the form w = w(θ), while the second gives the movement on the form θ = θ(t).

In the Keplerian case, F = −Gµ(m0 +m1)w2 and the first of equations (1.7) becomes

d2w

dθ2 + w = Gµ
2(m0 +m1)

L2 . (1.8)

The solution is
w(θ) = w1 + w2 cos(θ − θ0), θ0 = θ(t0), (1.9)

where w1 and w2 depend on the initial data and where t0 is the initial time. Finally, remembering
that r = 1/w, the equation (1.9) can be rewritten as

r = p

1 + e cos(θ − θ0) . (1.10)

If 0 ≤ e < 1 the orbit is an ellipse of eccentricity e with the center of the force at the focus of the
conic section. In this case, it is also interesting to calculate the ratio 2π/T , where T is the period
of revolution of the particle. The period is calculated using the fact that the areal velocity Ȧ is
constant:

Ȧ = 1
2rθ̇

2 = L

2µ = abπ

T
, (1.11)

where a and b are respectively the length of the semi-major and semi-minor axis of the ellipse
(b = a

√
1− e2). With elementary calculations one has:

2π
T

=
√
G(m0 +m1)a−3/2. (1.12)
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Finally, to obtain θ = θ(t) is sufficient to invert the equation

t− t0 = µ

L

∫ θ

θ0
[w1 + w2 cos(ψ − θ0)]−2 dψ. (1.13)

The solution of the equation (1.3) is

r(t) = p

1 + e cos(θ(t)− θ0)
[
cos(θ(t)− θ0)r̂0 + sin(θ(t)− θ0)θ̂0

]
, (1.14)

where
r̂0 = x1(t0)− x0(t0)

‖ x1(t0)− x0(t0) ‖ , θ̂0 = M
‖M ‖

× r̂0. (1.15)

Concluding, the trajectories of the two bodies are:

x0(t) = s(t)− m0
m0 +m1

r(t) x1(t) = s(t) + m1
m0 +m1

r(t) (1.16)

where s(t) = ṡ(t0)(t− t0) + s(t0) and r(t) is defined in (1.14).
It is important to notice that the two bodies describe similar trajectories around the common

barycenter and that the ratio between the size of the two orbits is inversely proportional to the
mass ratio. As a consequence, when the mass ratio tends to zero, as in the case of small body and
a star, the star’s orbit shrinks to the barycenter’s position: in this case, it is convenient to choose
as the central body the more massive of the two bodies, although from the mathematical point of
view the choice is arbitrary.

The fact that the orbit in a Keplerian potential is closed is due to the existence of a further
first integral, known as the Runge-Lenz vector. This vector is

A = v×M− Gm0m1r
‖ r ‖ (1.17)

where v = ṙ and M is the angular momentum (M = µr×v). It is simple to prove that the direction
of the vector A is along the major axis from the focus to the perihelion, and that its magnitude is
‖ A ‖= Gm0m1e, where e is the eccentricity of the ellipse.

1.2 Orbital elements
It is convenient for astronomers to characterize the relative motion of the two bodies by quantities
that describe the geometrical property of the orbital ellipse and the position on the ellipse. These
quantities are called orbital elements.

The shape of the ellipse can be completely determined by two quantities: the semi-major axis
a and the semi-minor axis b, or, equivalently, the semi-major axis a and the eccentricity e. The
eccentricity e is defined as the ratio between the distance of the focus from the center of the ellipse
and the semi-major axis of the ellipse:

e =

√
1− b2

a2 b = a
√

1− e2. (1.18)

It is therefore an indicator of how much the orbit differs from a circular one: e = 0 means that the
orbit is circular while 0 < e < 1 denote an elliptic orbit. On an elliptic orbit, the closest point to
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Figure 1.1: Keplerian motion: definition of a, e, ν and E. Reprinted from Fig. 1.3 of Giorgilli,
Meccanica celeste.

the central body is called pericenter (or alternatively perihelion if the central body is the Sun) and
its distance is equal to a(1 − e); the farthest point is called the apocenter (respectively aphelion)
and its distance is equal to a(1 + e).

To denote the position of the body on the elliptic orbit it is convenient to use polar coordinate
r and ν, where ν = 0 is oriented towards the pericenter of the orbit. The angle ν is called true
anomaly of the body. In this case, the equation of the ellipse is:

r = a(1− e2)
1 + e cos ν . (1.19)

Alternatively, we can use an orthogonal reference frame (X ,Y) with the origin at the focus of
the ellipse occupied by the Sun and X axis oriented towards the pericenter of the orbit. With
elementary geometrical relationships one has

X = r cos ν Y = r sin ν (1.20)

where r is given by (1.19).
To describe the motion of the planet along the orbit, it’s convenient to introduce a new angle

E called eccentric anomaly, as Fig. 1.1 shows. E is the angle subtended at the center of the ellipse
by the projection of the position of the body on the circle with radius a and tangent to the ellipse
at pericenter and apocenter. The following relationships between E and ν are all equivalent

(1− e cosE)(1− e cos ν) = 1− e2,

tan E2 =
√

1− e
1 + e

tan ν2 ,

sinE =
√

1− e2 sin ν
1 + e cos ν .

(1.21)
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The equation of the orbit relative to the angle E becomes:

r = a(1− e cosE) (1.22)

or using the orthogonal reference frame (X ,Y)

X = a(cosE − e),

Y = a
√

1− e2 sinE.
(1.23)

The position of a body in its orbit can be expressed in terms of a, e and E only. Using the fact the
areal velocity Ȧ, defined in (1.11), is constant, it is possible to derive the evolution law of E with
respect to the time, usually called Kepler equation

E − e sinE = n(t− t0), (1.24)

where
n = 2π

T
=
√
G(m0 +m1)a−3/2 (1.25)

is the orbital frequency or mean motion of the body, T is the period of revolution of the planet, t
is the time and t0 is the time of passage of pericenter.

It is also useful to introduce a new angle

M = n(t− t0) (1.26)

called the mean anomaly as an orbital element that changes linearly with time and still denotes
the position of the body in its orbit.

Kepler equation is a transcendental equation, thus it cannot be solved with simple mathematical
method. Using the Fourier series, it can be proven that the solution of Kepler equation is

E(M) = M + 2
∞∑
k=1

1
k
Jk(ke) sin(kM), (1.27)

where Jk(x) is the Bessel function of order k, defined as2

Jk(x) = 1
π

∫ π

0
cos[k(z − x sin z)]dz =

(
x

2

)k ∞∑
h=0

(−1)h (x2/4)h

h!(h+ k)! . (1.28)

Finally, to find the components of velocity of the body on the elliptic orbit, it is sufficient to
derive X and Y respect to time:

Ẋ = −aĖ sinE,

Ẏ = aĖ
√

1− e2 cosE.
(1.29)

2It is simple to prove the following useful properties (see Whittaker for more details):

Jk(−x) = (−1)kJk(x) = J−k(x), kJk(x) = x

2 (Jk−1(x) + Jk+1(x)).

These properties show that it is sufficient to know J0 and J1 to calculate the other Jk recursively.
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To apply these formulæ, we need to know Ė. To do this, we derive the Kepler equation respect to
time:

Ė(1− e cosE) = n (1.30)

and using the equation (1.22) of the ellipse, we obtain

Ė = na

r
=

√
G(m0 +m1)

r2a
, (1.31)

where r =
√
X 2 + Y2. The result is

Ẋ = −

√
G(m0 +m1)

a

2π sinE
1− e cosE = −

√
G(m0 +m1)
a(1− e2) sin ν,

Ẏ =

√
G(1− e2)(m0 +m1)

a

2π cosE
1− e cosE =

√
G(m0 +m1)
a(1− e2) (e+ cos ν),

(1.32)

where it has been used the relation between ν and E.

1.2.1 Determination of the orientation of the ellipse in the space

To characterize the orientation of the ellipse in space, with respect to an arbitrary orthogonal
reference frame (x, y, z) centered on the position of the central body, we have to introduce three
additional angles.

The first one is the inclination i of the orbital plane (the plane which contains the ellipse) with
respect to the (x, y) plane. If the orbit has a nonzero inclination, it intersects the (x, y) plane in
two points, called the nodes of the orbit. We define the ascending node as the node where the body
passes from negative to positive z. The orientation of the orbital plane in space is then completely
determined when the angular position of the ascending node from the x axis is given. This angle
is called the longitude of node Ω. The last angle that needs to be introduced is the argument of
pericenter ω. It characterizes the orientation of the ellipse in its plane and it is defined as the
angular position of the pericenter, measured in the orbital plane relative to the line connecting the
central body to the ascending node.

The orbital elements a, e, i, ω,Ω and M completely define the position r and the velocity dr/dt
of the secondary body with respect to the central one. In particular, there is a one-to-one corre-
spondence between r = [rx, ry, rz], dr/dt = [drx/dt, dry/dt, drz/dt] and the orbital elements which
is given by the relationship:

r = Ru dr
dt = R

du
dt , (1.33)

where, as we have seen, the vector u and du/dt have components

u = [X ,Y, 0] = [a(cosE − e), a
√

1− e2 sinE, 0] (1.34)

and
du
dt =

[dX
dt ,

dY
dt , 0

]
=
[
− na sinE

1− e cosE ,
na
√

1− e2 cosE
1− e cosE , 0

]
(1.35)
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Figure 1.2: Keplerian motion: definition of i, ω and Ω. Reprinted from Fig. 1.9 of Giorgilli,
Meccanica celeste.

respectively, and the rotation matrix R has entries

R =

cos Ω cosω − sin Ω cos i sinω − cos Ω sinω − sin Ω cos i cosω sin Ω sin i
sin Ω cosω + cos Ω cos i sinω − sin Ω sinω + cos Ω cos i cosω − cos Ω sin i

sin i sinω sin i cosω cos i

 . (1.36)

It is simple to prove that R−1 = RT .
Note that, in the definition of the orbital elements above, ω and Ω are not defined when the

inclination is zero (because the position of the ascending node is not determined), and, moreover,M
is not defined when the eccentricity is zero (because the position of the pericenter is not determined).
It is convenient, therefore, to introduce the longitude of pericenter $ = ω+Ω and themean longitude
λ = M+ω+Ω. The first angle is well defined when i = 0, while the second one is well defined when
i = 0 and/or e = 0. It is evident that also the set of orbital elements a, e, i,$,Ω, λ unequivocally
defines the position and the velocity of the body.

1.3 The problem of N bodies
In an inertial reference system, the equations of motion of an isolated system made of a star of
mass m0 and of N planets of masses m1,m2, ...mN are:

mi
d2xi
dt2 =

∑
j 6=i

Fij 0 ≤ i ≤ N (1.37)

where x0 is the position of the star, xi is the position of the i-th planet and

Fij = −Gmimj
xi − xj
‖ xi − xj ‖3

. (1.38)
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To study these equations, it’s useful the knowledge of constants of motion, which are quantities
that are conserved throughout the motion and that impose, in effect, constraints on the motion.
In this case, the constants of motion known are the energy E, the total linear momentum P and
the angular momentum M:

E = 1
2
∑
j

mjẋ2
j −
G
2
∑
j 6=i

mimj
xi − xj
‖ xi − xj ‖2

,

P =
∑
j

mjẋj ,

M =
∑
j

xj ×mjẋj .

(1.39)

Introducing the heliocentric position of the planets ri = xi − x0, the equation (1.37) can be
rewritten as

d2ri
dt2 = −G(m0 +mi)

‖ ri ‖3
ri +

N∑
j=1
j 6=i

Gmj

(
rj − ri
‖ rj − ri ‖3

− rj
‖ rj ‖3

)
, 1 ≤ i ≤ N, (1.40)

while the motion of the star is given by

d2x0
dt2 =

∑
i 6=0
−Gmi

ri
‖ ri ‖3

. (1.41)

The equations (1.40) are evidently very close to the equations of motion of the two-body problem
(1.2). Indeed, if the masses of the planets are small compared to that of the star (i.e. mi � m0 for
1 ≤ i ≤ N), and none of their mutual distance ‖ ri − rj ‖ becomes small, equation (1.40) can be
well approximated for time not too long as

d2ri
dt2 ' −

G(m0 +mi)
‖ ri ‖3

ri, 1 ≤ i ≤ N (1.42)

which are the equations of Keplerian motion.
As a consequence, because the motion resulting by the equations (1.40) will be close to the

Keplerian motion, rewriting equations (1.40) in terms of the orbital elements, the equations for
a, e, i, ω,Ω of each planet have the form dα/dt = O(mj/m0), where α denotes any of these elements
and O(mj/m0) denotes a function which is small as the mass of the planet in solar mass units; the
equation for M has the form dM/dt = n + O(mj/m0) where n is the unperturbed mean motion
resulting from the two-body problem. These equations show that the orbital elements a, e, i, ω,
Ω change slowly with time, while M deviates slowly from its linear unperturbed motion. Because
they are difficult to handle, the idea is to rewrite them in a slightly different form, a Hamiltonian
form, in order to study the motion in detail.

In particular, it is very easy to write the Hamilton’s equations for systems that conserve a
quantity (called “energy”) which in variables x and ẋ can be written as the sum of a “kinetic energy”
T (x, ẋ) and of a “potential energy” U(x). Indeed, if we can decompose T as T = T2 + T1 + T0,
where T2, T1 and T0 are respectively the terms of motion of order 2, 1 and 0 in ẋ, the equations of
motion can be written as

dxi
dt = ∂H(x,p)

∂pi
,

dpi
dt = −∂H(x,p)

∂xi
(1.43)
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for 0 ≤ i ≤ N , where pi are the momenta conjugates to the coordinates xi

pi = ∂T

∂ẋi
, 0 ≤ i ≤ N (1.44)

and where the function H is the Hamiltonian of the system:

H(x,p) = T2(x, ẋ)
∣∣∣∣
ẋ=ẋ(x,p)

−T0(x) + U(x). (1.45)

The Hamiltonian of N + 1 of “point-like” bodies, which interact with one other but with no
others bodies, coincides with the total energy of the system, i.e.

H =
N∑
i=0

pi · pi
2mi

− G
N∑
i=0

N∑
j=0
j 6=i

mimj

2 ‖ xi − xj ‖
, (1.46)

where pi = miẋi, for 0 ≤ i ≤ N . It is simple to prove that the Hamilton’s equations

ẋi = pi
mi
,

ṗi = −
∑
j 6=i
Gmimj

xi − xj
‖ xi − xj ‖3

,
(1.47)

for 0 ≤ i ≤ N , are equivalent to the equations of motion (1.37).
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Chapter 2

Relativistic celestial mechanics

Newton’s law of gravitation soon became accepted because it gave very accurate predictions of the
orbits of all the planets. In particular, the highest apotheosis of the Newtonian theory of gravitation
came when the planet Neptune was mathematically predicted before it was directly observed.
By 1846 the planet Uranus had completed nearly one full orbit since its discovery in 1781, and
astronomers had detected a series of irregularities in its path which could not be entirely explained
by Newton’s law of gravitation. These irregularities could, however, be resolved if the gravity
of a farther, unknown planet were disturbing its path around the Sun. The astronomers began
calculations to determine the nature and position of such a planet, which was finally discovered in
1846 by Urbain Le Verrier.

In 1859 Le Verrier discovered that the orbital precession of the planet Mercury (roughly 574.4”
of rotation per century1) was not quite what it should be; the ellipse of its orbit was rotating
(precessing) slightly faster than predicted by the traditional theory of Newtonian gravity, even
after all the effects of the other planets had been accounted for. The effect is small (roughly 43” of
rotation per century, approximately 7.5% of the total), but well above of the measurement error.
Several classical explanations were proposed, such as interplanetary dust, unobserved oblateness of
the Sun, an undetected moon of Mercury, or a new planet named Vulcan. After these explanations
were discounted, some physicists were driven to the more radical hypothesis that Newton’s inverse-
square law of gravitation was incorrect. For example, some physicists proposed a power law with
an exponent that was slightly different from 2. A number of ad hoc and ultimately unsuccessful
solutions were proposed, but they tended to introduce more problems.

Another possible explanation was given by Laplace in his treatise on celestial mechanics (see
Laplace, 1805 ). He had shown that if the gravitational influence does not act instantaneously but
it does propagate at a finite speed, then a planet is attracted to a point where the Sun was some
time before, and not towards the instantaneous position of the Sun. On the assumption of the
classical fundamentals, Laplace had shown that if gravity would propagate at a velocity on the
order of the speed of light then the Solar system would be unstable, and would not exist for a long
time. The observation that the Solar system is old allows one to put a lower limit on the speed
of gravity that is many orders of magnitude faster than the speed of light. Around 1904 − 1905,
the works of H. Lorentz, H. Poincaré and A. Einstein’s special theory of relativity, exclude the
possibility of propagation of any effects faster than the speed of light. It followed that Newton’s

1The arcsecond is defined as 1/3 600 of an degree, i.e. as π/648 000 radians. The standard symbol for marking
the arcsecond is the double prime ”.
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law of gravitation would have to be replaced with another law, which reduced to the Newtonian one
when relativistic effects are negligible. This new law is precisely the Einstein’s General Theory of
Relativity, which explains, among other things, the remaining precession of Mercury or the change
of orientation of the orbital ellipse within its orbital plane2.

The General Theory of Relativity (GR) has been one of the greatest achievements of the XX
century. Its formulation has revolutionized our way to understand the physical Universe and has
led, for example, to a consistent theory describing the global behavior of the Universe, which was
impossible in the framework of Newtonian mechanics.

In Einstein’s theory the space-time is thought as a four dimensional pseudo-Riemannian man-
ifold whose geometry interacts non-linearly with matter. Because of this feature, general calcula-
tions in GR require much more work than the corresponding ones in Newtonian gravity. Another
consequence of this difficulty concerns the validation of GR: our inability to solve in general the
gravitational field equation limits the possibility of devising full test of GR. Indeed, most of the
investigation on the validity of this theory was performed in a regime of weak field leaving the
strong field regime almost completely unexplored.

Einstein himself was well aware of the fact that the understanding of his theory in the pertur-
bation regime was crucial for its testing and its application to the problems in which Newtonian
gravity was most successful. For this reason in the 1930s he developed a perturbation approach
able to describe the subtle changes induced on the Newtonian evolution of the bodies in the Solar
system by General Relativity. The so-called Einstein-Infeld-Hoffman (EIH) equations are the re-
sults as first Post-Newtonian level of this attempt. The derivation of these equations was the birth
of a new field called Relativistic Celestial Mechanics.

2.1 Special Relativity
Special Relativity is a fundamental theory concerning space and time, developed by Albert Einstein
in 1905 as a modification of Galilean relativity.

It is based on two postulates, which are the Principle of Relativity and the Principle of Invariant
Light Speed.

The Principle of Relativity states that all the laws of nature are identical in all inertial system
of reference, i.e the equations expressing the laws of nature are invariant with respect to transfor-
mations of coordinate and time from one inertial system to other.

The Principle of Invariant Light Speed states that light is always propagated in empty space
with a definite velocity c which is independent of the state of motion of the emitting body. Moreover,
it states that the velocity of propagation of interactions coincides with the velocity of light in empty
space, whose numerical value is

c = 2.997 93× 108 ms−1. (2.1)

From the principle of relativity, it follows in particular that the velocity of light and the velocity
of propagation of interactions are the same in all inertial system of reference.

Thus the classical mechanics based on the assumption of instantaneous propagation of inter-
action contain intrinsic errors. On the other hand, the large value of this velocity explains the
fact that, in practice, classical mechanics appears to be sufficiently accurate in most case. In fact,
the velocities with which we have occasion to deal are usually so small compared with c and so

2It is important to remember that the other planets perihelion shifts as well, but, since they are farther from the
Sun and have longer periods, their shifts are lower, and could not be observed accurately until long after Mercury’s.
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the assumption that the velocity of light is infinity does not materially affects the accuracy of the
results.

The mechanics based on the Einsteinian Principle of Relativity (i.e. the combination of the
principle of relativity with the finiteness of the velocities of propagation of interactions) is called
relativistic. In the limiting case when the velocity of the moving bodies is small compared with
c, the relativistic mechanics goes over into the usual (Newtonian or classical) mechanics, based on
the assumption of instantaneous propagation of interactions.

The Einsteinian principle of relativity implies a wide range of consequences, which are for
example length contraction, time dilatation and relativity of simultaneity, which have been exper-
imentally verified. In particular, it has replaced the conventional notion of an absolute universal
time with the notion of a time that is dependent on reference frame and spatial position. For
these reasons, each event (i.e. a single moment in space and time) is characterized uniquely by a
four-vector (ct, x, y, z), which depends on the chosen reference system.

This theory is called “special” because it applies the principle of relativity only to the special
case of inertial reference frames. Einstein later published a paper on General Relativity in 1915
to apply the principle in the general case, that is to any reference frame, so as to handle general
coordinate transformations, and gravitational effects.

2.2 General Relativity
Gravitational fields, or fields of gravity, have the basic property that all bodies move in them in the
same manner, independently of mass, provided the initial conditions are the same. This property
of gravitational fields provides the possibility of establishing an analogy between the motion of a
body in a gravitational field and the motion of a body not located in any external field, but which
is considered from the point of view of a non-inertial system of reference. Thus the property of the
motion in a non-inertial system are the same as those in an inertial system in the presence of a
gravitational field, i.e. a non-inertial reference is equivalent to a certain gravitational field. This is
called the Principle of Equivalence.

The theory of gravitational fields, constructed on the basis of the theory of relativity, is called
General Theory of Relativity. The General Theory of Relativity generalizes the special relativity
and Newton’s law of universal gravitation, providing a unified description of gravity as a geometric
property of space and time, or space-time.

One of the basic concepts of General Relativity is that the presence of a mass changes the
geometrical properties of the space-time, in the sense that it tends to twist. Vice-versa, all the
curvature of space-time indicate the presence of a field whose source is a mass. Gravity becomes
so a geometric property of space-time, rather than a mysterious force that propagates with infinite
speed between two material objects as in the classical theory.

In General Relativity, the fundamental object of study is the metric tensor (or simply, the
metric). The metric captures indeed all the geometric structure of space-time, and it is used to
define notions such as distance, volume, curvature, angle, future and past. Mathematically, the
space-time is represented by a 4-dimensional differentiable manifold M and the metric is given as a
covariant, second-rank, symmetric tensor on M , conventionally denoted by g. Moreover the metric
is required to be non-degenerate with signature (−,+,+,+). A manifold M equipped with such
a metric is called a Lorentzian manifold. In local coordinates xi (where i is an index which runs
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from 0 to 3)3 the metric can be written in the form

g = gikdxidxk. (2.2)

With the quantity dxi being an infinitesimal coordinate displacement, the metric acts as an
infinitesimal invariant interval squared. For this reason one often sees the notation ds2 for the
metric:

ds2 = gikdxidxk. (2.3)

This is the invariant interval, i.e. the measure of separation between two arbitrarily close events in
space-time.

The metric (and the associated geometry of space-time) is determined by the matter and energy
content of space-time. Einstein’s field equations relate the metric (and the associated curvature
tensors) to the stress-energy tensor Tik, which is a tensor that describes the density and the flux of
energy and momentum in space-time. The Einstein field equations are a set of 10 equations which
describe the gravitational effects produced by a given mass in general relativity. Exact solutions of
Einstein’s field equations are very difficult to find.

When a body enters inside a gravitational field, represented by a curvature of space-time, it
moves along a path as short as possible, which depends by the curvature of space-time and so by
the metric tensor and which is called geodesic line.

The set of concepts related to General Relativity have been masterfully summarized by the
famous phrase of J. A. Wheeler:

“Mass tells space-time how to curve, and space-time tells mass how to move”.

Some of the most important experimental verifications of General Relativity are:

• Perihelion precession of Mercury;

• Deflection of light by the Sun;

• Gravitational redshift of light.

2.2.1 Distances and time intervals

In General Relativity, the choice of a coordinate system is not limited in any way: the triple of
space coordinate x1, x2, x3, can be any quantities defining the position of the bodies in space and
the coordinate x0 can be defined by an arbitrary running clock. The question that arise is how to
determine spatial and time intervals in term of the values of the quantities x0, x1, x2, x3.

We define the proper time for a given object as the time read by a clock moving with this object.
It can be proven that the relation between the proper time τ and the coordinate x0 is given by

dτ = 1
c

√
(g00)dx0 τ = 1

c

∫ √
(g00)dx0. (2.4)

This relation determines the actual time interval for a change of coordinate x0. We remember that
in special relativity, proper time elapses differently for clocks moving relative to one other. In the

3The indices go from zero to three: x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. space-time indices are always in Latin;
occasionally we will use Greek indices if we mean only the spatial components, e.g. µ = 1, 2, 3. Moreover, we use
the summation convention, i.e. indices which appear both as superscripts and subscripts are summed over.
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General Theory of Relativity, proper time elapses differently even at different points of space in the
same reference system. This means that the interval of proper time between two events occurring at
same point in the space, and the interval of time of two events simultaneous with these at another
point is space, are in general different from one another.

It can be proven that the element dl of spatial distance is:

dl2 = γαβdxαdxβ, γαβ = −gαβ + g0αg0β
g00

, (2.5)

where γαβ is the three dimensional metric tensor determining the metric, i.e. the geometrical
properties of the space. Because the space metric γαβ generally changes with time (gik generally
depend on x0), it is meaningless to integrate dl, such an integral would depend on the world line
chosen between the two given space points. Thus in General Theory of Relativity, the concept of
distance between bodies loses its meaning, remaining valid only for infinitesimally distance or in
the case in which gik don’t depend on the time.

2.2.2 Einstein field equations

As already mentioned, the Einstein Field Equations are used to determine the space-time geometry
resulting from the presence of mass-energy and linear momentum, i.e. they determine the metric
tensor of space-time for a given arrangement of stress-energy in the space-time.

The Einstein field equations may be written as

Rik −
1
2gikR = 8πG

c4 Tik (2.6)

where Rik is the Ricci curvature tensor, R the scalar curvature, gik the metric tensor, G is Newton’s
gravitational constant, c the speed of light in vacuum, and Tik the stress-energy tensor (for a brief
introduction of these concepts, see appendix A). The solutions of the Einstein field equations are
the components of the metric tensor.

We can notice that the expression on the left represents the curvature of space-time as deter-
mined by the metric; the expression on the right represents the matter/energy content of space-time.

One can write the Einstein field equations in a more compact form, using the Einstein tensor

Gik = 8πG
c4 Tik. (2.7)

If the energy-momentum tensor Tik is zero in the region under consideration (an empty space), the
equation of the gravitational field reduce to the equations Rik = 0. Flat Minkowski space is the
simplest example of solution of these equations; in this case the metric is simply

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.8)

It is important to note that the equations of gravitational field are non linear equations. There-
fore for gravitational fields the principle of superposition is not valid. However, in the approximation
of weak gravitational fields, for which the equations of the fields in first approximation are linear,
the principle of superposition is valid.

Finally, it can be proven that the Einstein field equations reduce to Newton’s law of gravitation
when the gravitational field is weak and velocities are much less than the speed of light.
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2.2.3 Motion of a particle in a gravitational field

The motion of a particle in a gravitational field is determined by the principle of least action. The
Principle of least action is defined by the statement that for each mechanical system there exist
a certain integral S, called action, which has a stationary value for the actual motion, so that its
variation δS is zero.

The action between two particular events a and b is defined as

S = −mc
∫ b

a
ds = −mc

∫ b

a

√
−gαβ

dxα
dλ

dxβ
dλ dλ (2.9)

where the integral is along the world line of the particle and λ is an invariant parameter which
described the curve. In particular, for material particles the parameter λ is usually chosen to be
the proper time τ or, equivalently, the space-time interval s (ds = cdτ).

Using the principle of least action, it can be proven that in a gravitational field the particle
moves along a geodesic line in the four space x0, x1, x2, x3. It can be shown that the geodesic
equation is

d2xi

ds2 + Γikl
dxk

ds
dxl

ds = 0, 0 ≤ i ≤ 3, (2.10)

where Γikl are the Christoffel symbols, which depend on the metric gik. This explains the second
part of the phrase of Wheeler, i.e. the fact that the motion of a body depends on the distribution
of matter and so on the curvature of space-time.

It is important to remember that the equation of geodesic in the form (2.10) is not applicable
to the propagation of a light signal, since along the world line of the propagation of a light ray the
interval ds is zero, so that all terms in equation (2.10) become infinity.

In the limiting case of small velocities and weak gravitational field, the relativistic equations of
motion of a particle in a gravitational field go into the corresponding non-relativistic equation.

The action integral can also be represented as an integral of a function L

S =
∫ b

a
Ldλ, (2.11)

where L represents the Lagrangian function of the mechanical system. In Lagrangian mechanics,
the equations of motion for a material particle (2.10) can be rewritten as

d
ds

∂L

∂(dxi/ds) −
∂L

∂xi
= 0, 0 ≤ i ≤ 3 (2.12)

which are called the Euler-Lagrange equations.
Because the action is invariant under re-parameterizations, we can choose t as the parameter λ

in (2.9)-(2.11) and we obtain the following definition of the Lagrangian

L = −mc
√
−gαβuαuβ (2.13)

where u = dxi/dt = (c,v) is the four-vector velocity of the test mass. The corresponding equations
of motion are

d
dt

∂L

∂ẋα
− ∂L

∂xα
= 0, 1 ≤ α ≤ 3. (2.14)
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2.2.4 Newton’s law

We carry now the transition of the Einstein equation (2.6) to the non-relativistic limit (i.e. weak
field and small velocities, compared with light velocity, of all bodies).

If the gravitational field is weak enough, then space-time will be only slightly deformed from
the gravity-free Minkowski space (2.8), and we can consider the space-time metric as a small
perturbation of the Minkowski metric:

gij = ηij + hij , h << 1. (2.15)

Using the fact that in non-relativistic mechanics the motion of a particle in a gravitational field is
determined by the Lagrangian L = −mc2 + 1

2mv
2 −mφ (φ is the non-relativistic potential of the

gravitational field), it can be proven that, in the limiting case which are considering, the expression
for the component g00 of the metric tensor is g00 = 1 + 2φ

c2 . In the non-relativistic limit, the
stress-energy tensor is given by

T 0
0 = µc2, Tµ0 = T 0

µ = 0, Tµν = 0, 1 ≤ µ, ν ≤ 3 (2.16)

Indeed, the stress-energy tensor is given by T ki = µc2ukui and in the non-relativistic limit we must
set uα = 0 and u0 = u0 = 1. Of course the scalar T = T ii will be equal to µc2.

Using the field equation, we obtain that R0
0 = 4πG

c4 µ and that all other equations are vanishing.
Because Γα00 ' −1

2η
αβ∂βh00 and R0

0 = ∂αΓα00, we obtain R0
0 = 1

c2 ∆φ. Thus the Einstein field
equations give

∆φ = 4πGµ. (2.17)

This is the equation of gravitational field in non-relativistic mechanics. In particular we have for
potential of the field of a single particle of mass m

φ = −Gm
R

(2.18)

and, consequently, the force F = −m′ ∂φ∂R′ acting in this field on another particle of mass m′ is

F = −Gmm
′

R2 , (2.19)

which is the well known law of attraction of Newton.
Now we show that the geodesic equation reduces to Newton’s second law. Remember the

geodesic equation (2.10), using proper time as the parameter of the worldline, every term con-
taining one or two spatial four-velocity components will be dwarfed by the term containing two
time components, because the particle in question is moving slowly. We can therefore take the
approximation

d2xµ

dτ2 + Γµ00
dx0

dτ
dx0

dτ = 0. (2.20)

Using the definition of g00 and the fact that τ ≈ t (in this limit), we obtain

d2xµ

dt2 = −∂µφ (2.21)

which is Newton’s second law of motion.
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2.3 The gravitational field equations
A system of bodies in motion loses some of its energy by radiating gravitational waves. However,
this loss of energy is revealed only in the approximation of the fifth order of 1/c, i.e. up to the
fourth approximation the energy of the system remains constant. This means that a system of
gravitating bodies can be described by a Lagrangian correctly less than fifth order terms. The aim
of these sections is to derive the Lagrangian of a system of bodies to terms of second order, i.e. in
the next approximation after the Newtonian. To do this, we shall neglect the dimensions and the
internal structure of the bodies, regarding them as “point-like”. Moreover, we do not consider the
rotation of these bodies around their axes. To derive the required Lagrangian, we follow the works
of Einstein, Infeld and Hoffmann (1938), Landau and Lifshitz (1971) and Brumberg (2008).

As first thing, we must determine the gravitation field produced by any centrally symmetric
non-rotating distribution of matter and the weak gravitational field produced by the bodies at large
distances compared to their dimensions, but, at the same time, at small distances compared to the
wavelength of the gravitational waves radiated by the system.

2.3.1 Schwarzschild metric

Let us consider a static gravitational field possessing central symmetry. Such a field can be produced
by any centrally symmetric non-rotating distribution of matter. The central symmetry of the field
means that the space-time metric, that is the expression for the interval ds, must be the same for
all points located at the same distance from the center. It is important to note that, while in a
euclidean space this distance is equal to the radius vector, in a non-euclidean space, such as we
have in the presence of a gravitational field, there is no quantity which has all the property of the
euclidean radius vector.

If we use “spherical” space coordinates r, θ, φ, it can been proven that the metric is

ds2 =
(

1− rg
r

)
c2dt2 − r2(sin2 θdφ2 + dθ2)− dr2

1− rg
r

, (2.22)

where M is the total mass of the bodies producing the field and rg = 2GM
c2 is called gravitational

radius of the body. The metric can be written in matrix form:

gik =


1− rg

r 0 0 0
0 −

(
1− rg

r

)−1 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 . (2.23)

An interesting thing that can be noticed is that at finite distance from the masses there is a “slowing
down” of the time compared with the time at infinity. In fact, combining g00 ≤ 1 with the formula
(2.4) dτ = √g00dt defining the proper time, it follows that dτ ≤ dt and the equality sign holds
only at infinity, where t coincides with the proper time.

The Schwarzschild solution is a useful approximation for describing slowly rotating astronomical
objects such as many stars, planets and black holes, including Earth and the Sun. In particular, the
Schwarzschild geodesics are a good approximation to the relative motion of two bodies of arbitrary
mass, provided that the Schwarzschild mass M is set equal to the sum of the two individual masses
m1 and m2.
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An approximate expression for ds2 at large distances from the origin of coordinates is

ds2 = ds2
0 −

2GM
c2r

(dr2 + c2dt2). (2.24)

The second term represents a small correction to the Galilean metric ds2
0. At large distances from

the masses producing it, every field appears centrally symmetric. Therefore (2.24) determines the
metric at large distances from any system of bodies.

Motion in a centrally symmetric gravitational field

Let us consider the motion of a test body in a centrally symmetric gravitational field. As in
every centrally symmetric field, the motion occurs in a single plane passing through the origin (e.g.
θ = π/2).

The geodesic equation for θ is

0 = d2θ

ds2 + 2
r

dθ
ds

dr
ds − sin θ cos θ

(dφ
ds

)2
(2.25)

so θ = π/2 is a valid solution. Fixed θ = π/2 (dθ/dt = 0), the geodesic equations for φ and t
become

0 = d2φ

ds2 + 2
r

dφ
ds

dr
ds 0 = d2t

ds2 + 1
w

dw
dr

dt
ds

dr
ds (2.26)

where w(r) = 1− rg
r and v(r) = 1/w(r). Solving (2.26), we obtain two constants of the motion:

L = cr2 dφ
ds E = c3

(
1− rg

r

) dt
ds. (2.27)

If we rewrite the metric as

c2 =
(

1− rg
r

)
c2
( dt

dτ

)2
− 1

1− rg
r

(dr
dτ

)2
− r2

(dφ
dτ

)2
, (2.28)

remembering that ds2 = c2dτ2 and θ = π/2, we obtain( dr
dφ

)2
= E2r4

L2c2 −
(

1− rg
r

)(
c2r4

L2 + r2
)
. (2.29)

Using the inverse radius u = 1/r, the orbital equation (2.29) can be rewritten in the form(du
dφ

)2
= E2

c2L2 −
c2

L2 + c2

L2 rgu− u
2 + rgu

3. (2.30)

Deriving both sides of (2.30) respect to φ and dividing for 2du/dφ, we obtain

d2u

dφ2 + u = GM
L2 + 3GM

c2 u2, (2.31)

where we have used rg = 2GM
c2 .
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Figure 2.1: Relativistic shift in the perihelion of the orbit. Courtesy of Kenneth R. Lang, from
his book The Cambridge Guide to the Solar System: Second Edition, Cambridge University Press,
2011, p. 217.

The term 3GM
c2 u2 is absent in the Newtonian theory (see (1.8)), where we have

d2u0
dφ2 + u0 = GM

L2 ,

u0 = GM
L2 (1 + e cosφ).

(2.32)

This term is important because it leads to a systematic (secular) shift in the perihelion of the orbit.
To solve (2.31), we look for a solution of the form

u(φ, ε) = u0(φ) + εu1(φ) + ε2u2(φ) + ..., (2.33)

where ε = 1
c2 , φ is not periodic and u0 is given by (2.32). Replacing u in (2.31) and collecting

together all coefficients of the same power of ε, we get the infinite system of equations of the form

d2uk
dφ2 + uk = 3GMu2

k−1(φ) (2.34)

for k ≥ 1. We can notice that the r.h.s. is a known function, because it depends only on uk−1(φ)
which is known or determined by the equations of preceding steps. Hence we may attempt a
recursive solution of the system.

In particular, the equation for u1 is:

d2u1
dφ2 + u1 = 3GMu2

0(φ) = 3G3M3

L4 (1 + 2e cosφ+ e2 cos2 φ). (2.35)

It can be proven that the solution of this equation is

u1 = 3G3M3

L4

{
1 + eφ sin(φ) + e2

[1
2 −

1
6 cos(2φ)

]}
. (2.36)
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The solution of (2.31) is so

u = GM
L2

{
1 + e cosφ+ 3G2M2

c2L2

[
1 + eφ sin(φ) + e2

(1
2 −

1
6 cos(2φ)

)]}
+O

( 1
c4

)
, (2.37)

which can be simplified in the following way

u ' GM
L2

[
1 + e cos

((
1− 3G2M2

c2L2

)
φ

)]
. (2.38)

The approximated solution is yet periodic, but with period equal to

T ' 2π
1− 3G2M2

c2L2

' 2π
(

1 + 3G2M2

c2L2

)
. (2.39)

Concluding, we have found that

∆T ' 6πG2M2

c2L2 (2.40)

which is the required angular displacement of the Newtonian ellipse during one revolution, i.e. the
shift in the perihelion of the orbit. Expressing it in term of the length a of the semi-major axis and
the eccentricity e of the ellipse (a = L2/(GM(1− e2))), we obtain

∆T ' 6πGM
c2a (1− e2) . (2.41)

Numerical values of the shifts determined from the formula (2.41) for Mercury and Earth are
equal, respectively, to 43.0” and 3.8” per century. Astronomical measurements give 43.1” ± 0.4”
and 5.0”± 1.2”, in excellent agreement with theory.

2.3.2 Gravitational fields at large distances from bodies

Using the considerations made in the previous section, it’s easy to derive the stationary gravitational
field at large distance r from the body (placed in the origin of the coordinates) which produces it,
and determine the first term of its expansion in power of 1/r. Because away from the body the
field is weak, the space-time metric is almost Galilean, i.e

gij = ηij + hij , h << 1. (2.42)

where ηij is given in (2.8) and where hij are small corrections that determine the gravitational field.
Less than zero of third-order, the determinant of the metric tensor is

g = η

(
1 + h+ 1

2h
2 − 1

2h
i
kh

k
i

)
. (2.43)

In the first approximation, to term of order 1/r, the small corrections hik are given by the corre-
sponding terms in the expansion of the Schwarzschild solution (2.24), i.e.

h00 = −rg
r

hαβ = −rg
r
δαβ h0α = 0 (2.44)
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where rg = 2GM/c2.
It is important to remember that the condition for which hik must be infinitesimal quantities,

does not determine a unique choice of the reference system. In fact, if this condition is met in some
system, it will be satisfied by any transformation x′i = xi+ ξi, where ξi are infinitesimal quantities.
In this case, it is simple to prove that the new metric g′ik is given by

g′ik = ηij + h′ij (2.45)

where
h′ij = hik −

∂ξi
∂xk
− ∂ξk
∂xi

. (2.46)

2.4 The equation of motion of a system of bodies in the second
approximation

The field h, found in the previous section, is the field at large distance from a “point-like” non-
rotating body placed in the origin of coordinate. Since it is a solution of the linearized Einstein
equations, for it the principle of superposition applies. Consequently, a field at large distances from
a system of bodies is calculated by summing the fields of each of these bodies:

h0
0 = 2

c2φ, hα0 = 0, hαβ = − 2
c2φδ

α
β, (2.47)

where
φ(r) = −G

∑
a

ma

‖ r− ra ‖
(2.48)

is the Newtonian gravitational potential of a system of point-like bodies (ra is the radius vector of
the body of mass ma). The expression of the interval of the metric tensor is

ds2 =
(

1 + 2
c2φ

)
c2dt2 −

(
1− 2

c2φ

)
(dx2 + dy2 + dz2). (2.49)

As will be seen from the sequel, to obtain the required equations of motion it’s sufficient to
know the spatial components hαβ to the accuracy ∼ 1/c2, with which are given in (2.44); the mixed
components (which are absent in the 1/c2 approximation) are needed up to terms of order 1/c3,
and the time component h00 to terms in 1/c4. To calculate them we turn once again to the general
equations of gravitation, and consider the terms of corresponding order in these equations.

Disregarding the fact that the bodies are macroscopic, we must write the energy-momentum
tensor of of the system of non-interacting particles. In curvilinear coordinates, it can be proven
that it is

T ik =
∑
a

mac√
−g

dxi

ds
dxk

dt δ(r− ra), (2.50)

where the summation extends over all the bodies in the system, ra is the radius-vector of the
particles, ma is the mass of the particle a and δ is the Dirac delta function. The component

T00 =
∑
a

mac
3

√
−g

g2
00

dt
dsδ(r− ra) (2.51)
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is equal to
∑
amac

2δ(r−ra) in first approximation (i.e. for Galilean gik); in the next approximation,
we substitute for gik from (2.49) and find, after a simple computation:

T00 =
∑
a

mac
2
(

1 + 5φa
c2 + v2

a

2c2

)
δ(r− ra), (2.52)

where va is the ordinary three-dimensional velocity (vα = dxα/dt) and φa is the potential of the
field at the point ra (it is simple to note that φ(r)δ(r− ra) = φaδ(r− ra))4.

As regards the components Tαβ, T0α of the energy momentum tensor, in this approximation it’s
sufficient to keep for them only the first terms in the expansion of the expression (2.50)

Tαβ =
∑
a

mavaαvaβδ(r− ra), T0α = −
∑
a

macvaαδ(r− ra). (2.53)

Next we compute the components of the Ricci tensor Rik, using the formula Rik = glmRlimk
with Rlimk given by (A.12). A simple computation gives for R00 the result

R00 =1
c

∂

∂t

(
∂hα0
∂xα

− 1
2c
∂hαα
∂t

)
+ 1

2∆h00 + 1
2h

αβ ∂2h00
∂xα∂xβ

+

− 1
4

(
∂h00
∂xα

)2
− 1

4
∂h00
∂xβ

(
2
∂hαβ
∂xα

− ∂hαα
∂xβ

)
.

(2.54)

In this computation we have still not used any auxiliary condition for the quantities hik. Making
use of this freedom (see (2.45)− (2.46)), we now impose the condition

∂hα0
∂xα

− 1
2c
∂hαα
∂t

= 0 (2.55)

as a result of which all term containing the components h drop out of R00. In the remaining terms,
we substitute

h0
0 = 2

c2φ+O

( 1
c4

)
, hββ = − 2

c2φδ
β
β (2.56)

and obtain, to the required accuracy,

R00 = 1
2∆h00 + 2

c4φ∆φ− 2
c4 (∇φ)2, (2.57)

where we have gone over to three-dimensional notation.
In a similar way, we find that the components R0α is

R0α = 1
2c
∂2hβα
∂t∂xβ

+ 1
2
∂2hβ0
∂xα∂xβ

− 1
2c
∂2hββ
∂t∂xα

+ 1
2∆h0α (2.58)

and then, using the condition (2.55):

R0α = 1
2∆h0α + 1

2c3
∂2φ

∂t∂xα
. (2.59)

4As yet, we pay no attention to the fact that φa contains an infinite part, i.e. the potential of the self-field of the
particle ma: concerning this, see below.
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Using the expressions from (2.52) to (2.59), we now write the Einstein equations

Rik = 8πG
c4

(
Tik −

1
2gikT

)
. (2.60)

The time component of equation (2.60) gives

∆h00 + 4
c4φ∆φ− 4

c4 (∇φ)2 = 8πG
c4

∑
a

mac
2
(

1 + 5φa
c2 + 3v2

a

2c2

)
δ(r− ra), (2.61)

which can be rewritten in the form

∆
(
h00 −

2
c4φ

2
)

= 8πG
c4

∑
a

mac
2
(

1 + 5φ′a
c2 + 3v2

a

2c2

)
δ(r− ra), (2.62)

using the identity
4(∇φ)2 = 2∆(φ2)− 4φ∆φ

and the equation of the Newtonian potential

∆φ = 4πG
∑
a

maδ(r− ra).

In the right side of equation (2.62), after completing all the computations, we have replaced φa by

φ′a = −G
∑
b 6=a

mb

‖ ra − rb ‖
, (2.63)

i.e. by the potential at the point ra of the field produced by all particles except for the particle
ma

5.
Using the relation

∆ 1
‖ r ‖ = −4πδ(r),

it can been proven that the solution of (2.62) is

h00 = 2φ
c2 + 2φ2

c4 −
2G
c4

∑
a

maφ
′
a

‖ r− ra ‖
− 3G
c4

∑
a

mav
2
a

‖ r− ra ‖
. (2.64)

The mixed component of equation (2.60) gives

∆h0α = −16πG
c3

∑
a

mavaαδ(r− ra)−
1
c3

∂2φ

∂t∂xα
. (2.65)

The solution of this linear equation is

h0α = 4G
c3

∑
a

mavaα
‖ r− ra ‖

− 1
c3

∂2f

∂t∂xα
, (2.66)

5The exclusion of the infinite self potential of the (point-like) particles corresponds to a “renormalization” of their
masses, as a result of which they take on their true values, which take into account the field produced by the particles
themselves.

24



where f is the solution of the auxiliary equation

∆f = φ = −
∑ Gma

‖ r− ra ‖
. (2.67)

Using the relation ∆r = 2/r, we find

f = −G2
∑
a

ma ‖ r− ra ‖, (2.68)

and then, after a simple computation, we finally obtain:

h0α = G
2c3

∑
a

ma

‖ r− ra ‖
[7vaα + (va · na)naα] (2.69)

where na is a unit vector along the direction of the vector r− ra.
Using the expressions (2.47) − (2.64) − (2.69), the required Lagrangian for a single particle to

terms of second order, in a gravitational field produced by other particles and assumed to be given,
is

La = −mac
ds
dt = −mac

2
(

1 + h00 + 2h0α
vαa
c
− v2

a

c2 + hαβ
vαa v

β
a

c2

)1/2

, (2.70)

where v2
a = va · va.

Expanding the square root and dropping the unrelevant constant −mac
2, we rewrite this ex-

pression, to the required accuracy, as

La = mav
2
a

2 + mav
4
a

8c2 −mac
2
(
h00
2 + h0α

vαa
c

+ 1
2c2 + hαβv

α
a v

β
a −

h2
00
8 + h00

4c2 v
2
a

)
. (2.71)

The total Lagrangian of the system is, of course, not equal to the sum of the Lagrangians La for
the individual bodies, but must be constructed so that it leads to the correct values of the force
fa acting on each of the bodies for a given motion of the others. For this purpose we compute the
forces fa by differentiating the Lagrangian La:

fa =
(
∂La
∂r

)
r=ra

. (2.72)

It is then easy to form the total Lagrangian L, from which all of the forces fa are obtained by taking
the partial derivatives ∂L/∂ra. The final results for Lagrangian is:

L =
∑
a

mav
2
a

2 +
∑
a

∑
b 6=a

Gmamb

rab
+

+
∑
a

mav
4
a

8c2 +
∑
a

∑
b6=a

3Gmambv
2
a

2c2rab
−

−
∑
a

∑
b 6=a

Gmamb

4c2rab
[7(va · vb) + (va · nab)(vb · nab)]−

−
∑
a

∑
b 6=a

∑
c 6=a

G2mambmc

2c2rabrac
,

(2.73)
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where rab =‖ ra − rb ‖ and nab is a unit vector along the direction ra − rb.
The equation of motion corresponding to this Lagrangian were first obtained by A. Einstein, L.

Infeld and B. Hoffmann in 1938. We can notice that, in the limit c→∞, one recovers the Newton’s
Lagrangian of N bodies.

The relativistic center of inertia

Finally, we want to find the coordinates of the center of inertia of a system of gravitating bodies
in the second approximation.

The relativistic center of inertia R of the system is given by the formula

R =
∑
aEara +

∫
WrdV∑

aEa +
∫
WdV , (2.74)

where Ea is the kinetic energy of the particle (including its rest energy) andW is the energy density
of the gravitational field. Since the Ea contains the large quantities mac

2, it is sufficient to consider
only those terms of Ea and of W which do not contain c, i.e. we consider only the non relativistic
kinetic energy of the particles and the energy of gravitational field. It can be proven that the energy
density of the gravitational field in the Newtonian theory is W = − 1

8πG (∇φ)2.
The coordinates of the center of inertia are so given by the formula

R = 1
E

∑
a

ra

mac
2 + p2

a

2ma
− Gma

2
∑
b 6=a

mb

rab

 ,
E =

∑
a

mac
2 + p2

a

2ma
− Gma

2
∑
b 6=a

mb

rab

 ,
(2.75)

where E is the total energy of the system.
It is easy to show that E is conserved, i.e. Ė = O(c−4), and that the barycentre’s acceleration

vanishes, i.e. R̈ = O(c−4). Therefore the barycenter moves uniformly with constant velocity, and
R can be set equal to zero by placing the origin of the coordinate system at the relativistic center
of mass.

As expected, if the velocities of all particles are small compared to c and the gravitational field
is weak, we can approximately set E ≈ mc2 (where E is the total energy E =

∑
aEa +

∫
WdV ) so

that (2.75) goes over into the usual classical expression

R =
∑
amara∑
ama

. (2.76)

2.4.1 Relativistic Hamiltonian of N bodies

Because the Lagrange equations are difficult to handle, we rewrite them in a Hamiltonian form
before to study them in detail.

Consider a n-dimensional differentiable manifold (the configuration space) endowed with (local)
coordinates q1, q2, ..., qn, and its tangent space described by the generalized components q̇1, q̇2, ..., q̇n
of the velocity. The dynamical state of the system at a given time t is completely determined by
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the knowledge of q(t), q̇(t). In particular, the dynamics is determined by the Lagrangian function
L(q(t), q̇(t), t) through the n differential equations of second order

d
dt
∂L

∂q̇j
− ∂L

∂qj
= 0, 0 ≤ j ≤ n. (2.77)

To rewrite the Lagrange equations in a Hamiltonian form, we first introduce the momenta
p1, ..., pn conjugated to q1, ..., qn defined as

pj = ∂L

∂q̇j
(q, q̇, t), 1 ≤ j ≤ N. (2.78)

which are given as function of q, q̇, t. If the condition det
(

∂2L
∂q̇i∂q̇j

)
6= 0 is fulfilled, then (2.78) can

be solved with respect to q̇1, ..., q̇n, thus giving q̇i = q̇i(q,p, t), and the momenta can be used in
place of the velocities q̇(t) in order to determine the dynamical state.

The Hamiltonian function of the system is defined as the Legendre transform of the Lagrangian:

H(q,p, t) =

 n∑
j=1

pj(q, q̇, t)q̇j − L(q, q̇, t)


q̇=q̇(q,p,t)

, (2.79)

where q̇ must be replaced everywhere with its expression as a function of q,p, t. It is simple to
prove that Hamilton’s equations

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, (2.80)

correspond to the Euler-Lagrange equations (2.77).
In the case of relativistic Lagrangian (2.73), the momenta conjugates to the coordinates are

pi = mivi + 1
c2


1
2miv

2
i vi +

N∑
j=1
j 6=i

3Gmimj

rij
vi −

N∑
j=1
j 6=i

Gmimj

2rij
[7vj + (vi · nij)nij ]

 (2.81)

where vi = q̇i. It can be proven that, to the accuracy ∼ 1/c2, we have

q̇i = pi
mi
− 1
mic2


1

2m2
i

p2
ipi +

N∑
j=1
j 6=i

3Gmj

rij
pi −

N∑
j=1
j 6=i

Gmimj

2rij

[
7
mj

pj + 1
mi

(pi · nij)nij

] . (2.82)

In fact, consider the following problem. Let n ≥ 1 and let f a function defined as

f : Rn → Rn (2.83)
x 7→ y = f(x) = Ax + εϕ(x)

where A is a n × n real matrix such that detA 6= 0 (i.e. A is invertible), ε is a parameter which
satisfies the condition |ε| � 1 and ϕ is a C1(Rn,Rn) function such that for each x ∈ Rn

det [A+ εDx(ϕ(x))] 6= 0,
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where Dx(ϕ(x)) is the Jacobian matrix of ϕ(x). Because f satisfies the hypotheses of the inverse
function theorem, for every x ∈ Rn there exists a neighborhood U ⊂ Rn of x such that the function
f is invertible in U .

To find a function that approximates the inverse of f , we proceed as follows. Using the fact
that x = A−1y− εA−1ϕ(x) and that x ' A−1y (because ε� 1), we have

x = A−1y− εA−1ϕ(x)|x=A−1y−εA−1ϕ(x) = A−1y− εA−1ϕ(A−1y) + R(y) (2.84)

where ‖ R(y) ‖= O(ε2) (because R(y) ∼= εA−1[ϕ(A−1y)−ϕ(A−1y− εA−1ϕ(A−1y))] ).
Thus, less than errors of order ε2, the inverse of the function (2.83) is

x = f−1(y) ∼= A−1y− εA−1ϕ(A−1y). (2.85)

In our case, the problem to invert the function p = p(x,v) given in (2.81) (where x are
considered fixed but arbitrary) can be solved using the solution of the more generic problem studied
in (2.83). Thus, using (2.85), the inverse of p = p(x,v) is given by v = v(x,p) in (2.82), less than
errors of order c−4.

Using (2.73)-(2.79)-(2.82), it simple to prove that, less than terms of fourth-order, the relativistic
Hamiltonian is

H =
N∑
i=1

1
2mi

p2
i − G

N∑
i=1

N∑
j=1
j 6=i

mimj

2rij
−

−
N∑
i=1

p4
i

8c2m3
i

−
N∑
i=1

N∑
j=1
j 6=i

3Gp2
jmi

2c2mjrij
+

+
N∑
i=1

N∑
j=1
j 6=i

G
4c2rij

[7pi · pj + (pi · nij)(pj · nij)]+

+
N∑
i=1

N∑
j=1
j 6=i

N∑
k=1
k 6=i

G2mimjmk

2c2rijrjk
.

(2.86)

where, as before, p2
i = pi · pi and p4

i = (pi · pi)2.

2.4.2 Lense-Thirring effect

In the Newtonian case, the rotation of the bodies around their axes has no effect on the orbit of
each body, because, in Newtonian mechanics, the gravitational field of a body depends only on its
mass and not on its rotation. Instead, Einstein’s General Theory of Relativity predicts that, given
a system of massive bodies that rotate around their axes, part of the distortion of space-time due to
the presence of bodies is given precisely by the rotation of the bodies on themselves. In particular,
General Relativity predicts that the rotation of massive objects would distort the space-time metric,
so that the space-time surrounding the objects is “dragged” along with them as they rotate (for this
reason the effect was called “frame-dragging”). One way to visualize this effect is to place a small
ball in a thick fluid such as honey. As the ball spins, it pulls the honey around itself. Anything
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stuck in the honey will also move around the ball. Similarly, as a massive object rotates, it pulls
space-time in its vicinity around itself, making the orbit of a nearby test particle precess. On the
other hand, this effect is very small, and in particular it is irrelevant if the distances between the
bodies are very large and the speed of rotation of the bodies around their axes is very small.

For simplicity, let us consider the stationary weak gravitational field possessing central symmetry
produced by a symmetric rotating central body of mass m′. This case was studied for the first time
in 1918 by the physicists J. Lense and H. Thirring and this simple model allows us to determine
the effects due to the rotation of the central Star on the orbit of the (non-rotating) planets.

The problem is to determine the systematic (“secular”) shift of the orbit of a particle of mass
m moving in the field of a central body, associated with the rotation of the latter. It can be proven
that, in Cartesian coordinates, the space-time metric at large distance r from the rotating central
body is given by

gik = ηik + h
(1)
ik + h

(2)
ik , (2.87)

where ηik is the Minkowski metric and

h
(1)
00 = −rg

r
, h

(1)
αβ = −rg

r
nαnβ, h

(1)
0α = 0,

h
(2)
00 = 0, h

(2)
αβ = −

(
rg
r

)2
nαnβ, h

(2)
0α = −2G

c3 M
′
αβ

nβ
r2

(2.88)

where rg = 2Gm′/c2 and where M ′αβ is the angular momentum of the rotating body.
In particular, if the central rotating body is a homogeneous sphere of radius R and mass m′, then

M ′αβ =

 0 M ′z −M ′y
−M ′z 0 M ′x
M ′y −M ′x 0

 (2.89)

and
M′ = [M ′x,M ′y,M ′z] = Iωωω, I = 2

5m
′R2 (2.90)

where I is the moment of inertia and ωωω is the angular velocity vector.
It can be proven that, in a stationary gravitational field, there acts on the particle a “Coriolis

force” equal to that which would act on the particle if it were on a body rotating with angular
velocity

Ω = c

2
√
g00∇× g, g = 2G

c3r2 n×M′. (2.91)

Therefore we may say that in the field produced by a rotating body (with total angular momentum
M′) there acts on a particle distant from the body a force which is equivalent to the Coriolis force
which would appear for a rotation with angular velocity

Ω ' c

2∇× g = G
c2r2 [M′ − 3n(n ·M′)]. (2.92)

The Lagrangian for a particle moving in the field (2.87) − (2.88) of a central rotating body
is L = −mcds

dt . Because all the relativistic effects are small, they superpose linearly with one
another, so in calculating the effects resulting from the rotation of the central body we can neglect
the influence of the non-Newtonian centrally symmetric force field which we considered in section
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2.3.2; in other words, we can make the computations assuming that of all the hik only the h0α are
different from zero.

Thus, the required Lagrangian is (J. Lense and H. Thirring, 1918 )

L = L0 + δL = 1
2µv · v + Gmm

′

‖ r ‖ + 2Gµ
c2r3 M′ · (v× r), (2.93)

where r is the astrocentric position of the particle (r =‖ r ‖), µ = mm′/(m + m′), v = ṙ and M′

is the angular momentum of the central body. Then the Hamiltonian is6:

H = H0 + δH = 1
2µp · p− Gmm

′

‖ r ‖ + 2G
c2r3 M′ · (r× p), (2.94)

where p = µv.
As we have seen, the orientation of the classical orbit of the particle is determined by two

conserved quantities, which are the angular momentum of the particle M and the Runge-Lenz
vector A:

M = r× p, A = p
µ
×M− Gmm

′r
‖ r ‖ . (2.95)

In particular, the vector M is perpendicular to the plane of the orbit, while the vector A is
directed along the major axis of the ellipse toward the perihelion (and ‖ A ‖= Gmm′e, where e is
the eccentricity of the orbit). Thus, the required shift of the orbit can be described in terms of the
change in direction of these vectors.

Using Hamilton’s equations, it can be proven that the secular change of M is given by the
formula

dM
dt = 2G

c2a3(1− e2)
3
2
M′ ×M, (2.96)

where a and e are the semi-major axis and the eccentricity of the ellipse, i.e. the vector M rotates
around the axis of rotation of the central body, remaining fixed in magnitude.

Moreover, it can be shown that the secular change of the vector A is given by the formula

dA
dt = Ω×A, (2.97)

where
Ω = 2GM ′

c2a3(1− e2)
3
2
{n′ − 3n(n · n′)}, (2.98)

and where M ′ =‖ M′ ‖ and n and n′ are unit vector along the direction of M and M′. Formula
(2.97) shows that the vector A rotates with angular velocities Ω, remaining fixed in magnitude,
i.e. the eccentricity of the orbit does not undergo any secular change.

Formula (2.96) can be re-written as

dM
dt = Ω×M (2.99)

6Let the Lagrangian be of the form L = L0 + L′, where L′ is a small correction of L = L0. It can be proven that
the corresponding addition H ′ in the Hamiltonian H = H0 +H ′ is related to L′ by

(H ′)q,p = −(L′)q,q̇.
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with the same Ω as in (2.98). Thus, Ω is the angular velocity of rotation of the ellipse “as a whole”:
this rotation includes both the additional (compared to that considered in section 2.3.1) shift of the
perihelion of the orbit, and the secular rotation of its plane about the direction of the axis of the
two body (where the latter effect is absent if the plane of the orbit coincides with the equatorial
plane of the central body, i.e. i = π/2).

For comparison we note that the effect considered in section 2.3.1 corresponds to

Ω = 6πG(m0 +m1)
c2a(1− e2)T n, (2.100)

where T is the period of revolution of the particle around the central body.
Using (2.96) and (2.97)-(2.98), we find for the longitude of the ascending node Ω and for the

argument of the pericenter ω, respectively, a pro-/retrograde precession of

∆Ω = 2GM ′

c2a3(1− e2)
3
2
, ∆ω = − 6GM ′ cos i

c2a3(1− e2)
3
2
. (2.101)

Now we can apply the above formulæ in the case of the Solar system to determine the effects
due to the rotation of the Sun. By assuming an homogeneous, spherically and uniformly rotating
Sun, if we adopt M ′ = 1.9× 1041 Kg m2 s−1 for the solar proper angular momentum, we found
that the numerical values of the shifts of the argument of the pericenter for Mercury and Earth
are equal, respectively, to −0.003” and −0.00015” per century. As expected, in the case of the
Solar system, the Lense-Thirring effect is quite small (in fact the angular momentum of the Sun is
relatively small and the Lense-Thirring precession fall off with the inverse of the third power of the
planet’s semi-major axis).

For these reasons, because in the following we consider only systems in which the angular
momentum of the central star is small, we decide to assume that all bodies are not rotating,
making a negligible error.

31



Chapter 3

Numerical integration of the
planetary problem

We have seen that, in the configuration space R6(N+1), the non-relativistic Hamiltonian of a system
made of a star of mass m0 and of N planets of masses m1,m2, ...mN which interact with one other
but with no others bodies, is

H =
N∑
i=0

1
2mi

y2
i − G

N∑
i=0

N∑
j=0
j 6=i

mimj

2rij
(3.1)

where x0, ...,xN are the positions of the N + 1 bodies, rij =‖ xj − xi ‖ for 0 ≤ i, j ≤ N , yi = miẋi
and y2

i = yi · yi for i = 0, ..., N .
In the relativistic case, less than errors of order c−4, the Hamiltonian is

H =
N∑
i=0

1
2mi

y2
i − G

N∑
i=0

N∑
j=0
j 6=i

mimj

2rij
+ 1
c2

{
−

N∑
i=0

y4
i

8m3
i

−
N∑
i=0

N∑
j=0
j 6=i

3Gy2
jmi

2mjrij
+

+
N∑
i=0

N∑
j=0
j 6=i

G
4rij

[7yi · yj + (yi · nij)(yj · nij)] +
N∑
i=0

N∑
j=0
j 6=i

N∑
k=0
k 6=i

G2mimjmk

2rijrjk

}
.

(3.2)

where nij = (ri − rj)/rij , y2
i = yi · yi, y4

i = (yi · yi)2 and where yi is defined as:

yi = miẋi + 1
c2


1
2mi(ẋi · ẋi)ẋi +

N∑
j=0
j 6=i

3Gmimj

rij
ẋi −

N∑
j=0
j 6=i

Gmimj

2rij
[7ẋj + (ẋi · nij)nij ]

 . (3.3)

The aim of this chapter is to study numerically the dynamics described by the Hamiltonian
(3.1) and (3.2) for some extrasolar systems to see if there are significant differences between the
Newtonian and the relativistic case. In particular, we study only the case N + 1 = 3 and we
consider only systems far enough from collisions and such that no strong mean motion resonances
are present.
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The numerical integration of the equations of motion corresponding to the Hamiltonian (3.2)
is greatly slow, and it is useful only in situations where the relativistic contribution of every object
in the system is to be taken into account. Thus we look for a simplification of the relativistic
Hamiltonian. In particular, we skip the relativistic corrections due to the mutual interactions
between the two planets, i.e. we consider the mutual interaction between the two planets as a
Newtonian one. This choice leads to a strong simplification of the relativistic Hamiltonian and it
is justified by the fact that the relativistic corrections due to the mutual interactions between the
two planets is a negligible correction compared with the relativistic corrections due to the mutual
interactions between the star and the planets.

The simplified Hamiltonian, although less exact than Hamiltonian (3.2), is computationally
much more affordable and, as we will show, the dynamic described by the simplified Hamiltonian
is very similar to the real one, at least numerically in the systems that we have considered.

3.1 Canonical transformations
As we have seen, a system of ordinary differential equations of the type

dr
dt = F(r) (3.4)

is said to be Hamiltonian form if r is a 2n-uple and, denoting by q1, q2, ..., qn and p1, p2, ..., pn its 2n
components, there exist a function H(q1, ..., qn, p1, ..., pn) (called Hamiltonian) such that equations
(3.4) can be rewritten as

dqi
dt = ∂H

∂pi

dpi
dt = −∂H

∂qi
(3.5)

for i = 1, ..., n. The variables q and p are called the conjugate variables and, in particular,
q1, q2, ..., qn and p1, p2, ..., pn are respectively called coordinates and momenta. The (q,p) space
is usually a 2n−dimensional differentiable manifold called the phase space of the system and the
dimension n of the vector q and p is called the number of degrees of freedom.

As for a generic system of differential equations, coordinate transformations can be used in order
to bring the system to a simpler form. In particular, in the Hamiltonian world, the idea is to use
the link between the Hamilton’s equations and the Hamiltonian to make the change of coordinates
in each of the 2n differential equations, i.e. we put the Hamiltonian in the new variables and from
it we derive the equations of Hamilton in the new variables. However, not all changes of coordinate
preserve the form of the canonical equations of motion, in the sense that the second members are
not expressed as derivatives of a unique function. This leads to introduce the concept of canonical
transformation.

Definition 1. A time independent transformation of coordinate and momenta in phase space is
said to be canonical if it preserve the Hamiltonian form of the equations of motion, whatever the
Hamiltonian function. More precisely, a transformation (q,p) → (q′,p′) is canonical if to every
Hamiltonian H(q,p) one can associate another function K(q′,p′) such that the equation of motion
for q′ and p′ become:

q̇′i = ∂K

∂p′i
ṗ′i = −∂K

∂q′i
, 1 ≤ i ≤ n. (3.6)
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In some cases, the new Hamiltonian K(q′,p′) can be constructed by a straightforward substi-
tution of the transformation in the old one:

K(q′,p′) = H(q(q′,p′),p(q′,p′)). (3.7)

The class of canonical transformations is a very restrictive class among all possible transforma-
tions on the phase space, but if we don’t want to lose the Hamiltonian form of the equations we
are compelled to restrict to canonical transformations.

The most useful criterion, to test whether a given transformation is canonical, is that of Poisson
bracket1. It can be proven that a transformation (q,p) → (q′,p′) is canonical if and only if it
preserves the fundamental Poisson bracket, i.e., considering the components q′1, q′2, ..., q′n of q′ and
p′1, p

′
2, ..., p

′
n of p′ as a function of (q,p), one has

{p′i, p′j} = 0, {q′i, q′j} = 0, {p′i, q′j} = δi, j (3.9)

where δi,j is 1 if i = j and 0 otherwise.

3.2 Barycentric coordinates
In astronomy, barycentric coordinates are non-rotating coordinates with origin at the center of mass
of the N + 1 bodies.

In classical mechanics, using the conservation of the total linear momentum P =
∑N
i=0 yi (where

yi = miẋi), it is simple to prove that the center of mass R moves of uniform rectilinear motion:

R(t) =
∑N
i=0mixi(t)∑N

i=0mi

= R(0) + P∑N
i=0mi

t. (3.10)

In relativistic mechanics, the coordinates of the center of inertia are given by the formula

R(t) = 1
E

N∑
i=0

xi(t)

mic
2 + y2

i (t)
2mi

− G
N∑
j=0
j 6=i

mimj

2rij(t)


E =

N∑
i=0

mic
2 + p2

i

2mi
− Gmi

2
∑
j 6=i

mi

rij


(3.11)

where E is the total energy of the system (Ė = O(c−4)). Also in this case, we have seen that the
barycenter moves uniformly with constant velocity Ṙ = P/E, i.e. R̈ = O(c−4), where P =

∑N
i=0 yi

with yi defined in (3.3).
Thus, using the conservation of the total linear momentum, a first possible reduction of the

equations of motion is obtained imposing in both cases the conditions

R(t) = 0, Ṙ(t) = 0, ∀t, (3.12)
1In general, let f(q,p) and g(q,p) be differentiable dynamical variables; then the Poisson bracket is defined as

{f, g} =
n∑
j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
. (3.8)
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in order to reduce of 3 the number of degrees of freedom of the system.
A reference system which satisfies the condition (3.12) is called a barycentric inertial reference

system.

3.3 Heliocentric coordinates
In a barycentric inertial reference system, we introduce the canonical heliocentric coordinates which
describe the position of each body with respect to the position of the central star.

The heliocentric coordinates r0, ..., rN are given by the transformation

r0 = x0, rk = xk − x0, k = 1, ..., N (3.13)

and the inverse transformation is

x0 = r0, xk = r0 + rk, k = 1, ..., N. (3.14)

In matrix notation, the change of coordinate is given by

r0
r1
r2
...

rN−1
rN


=



1 0 0 . . . 0 0
−1 1 0 . . . 0 0
−1 0 1 . . . 0 0
...

...
... . . . ...

...
−1 0 0 . . . 1 0
−1 0 0 . . . 0 1





x0
x1
x2
...

xN−1
xN


= L



x0
x1
x2
...

xN−1
xN


. (3.15)

Obviously, the linear transformation of coordinates x0, ...,xN to the coordinates r0, ..., rN given by

rk =
N∑
j=0

Akjxj , k = 0, ..., N (3.16)

where A is a 3(N+1)×3(N+1) non-singular matrix, is a point transformation. It can be extended
to a canonical transformation in the following way: if y0, ...,yN are the momenta conjugate to the
old coordinates x0, ...,xN and if p0, ...,pN are the momenta conjugate to the new coordinates
r0, ..., rN , it can be proven that the canonical transformation of the momenta is

pk =
N∑
j=0

[
(A−1)T

]
kj

yj , k = 0, ..., N. (3.17)

Moreover, it is easy to show that the angular momentum maintains the same form under a linear
transformation of the type (3.16)-(3.17), i.e.

M =
N∑
i=0

xi × yi =
N∑
i=0

ri × pi. (3.18)

In our cases, the canonical transformation on the momenta is given by

p0
p1
p2
...

pN−1
pN


=
(
L−1

)T


y0
y1
y2
...

yN−1
yN


=



1 1 1 . . . 1 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1





y0
y1
y2
...

yN−1
yN


. (3.19)
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In a more compact form, the change of momenta is given by

p0 =
N∑
i=0

yi, pk = yk, k = 1, ..., N (3.20)

and the inverse transformation is

y0 = p0 −
N∑
i=1

pi, yk = pk, k = 1, ..., N. (3.21)

where p0 is the total linear momentum. As we have seen, p0 is constant, and, in particular, because
we are working in the barycentric reference system, it is equal to zero, i.e. p0 = 0.

Using the heliocentric coordinates, the Hamiltonians can be written as the sum of two parts:
a main part, which describes the Keplerian motion of the (individual) planets under the action of
the central star, and a perturbation part, which is small with respect to the main part and which
takes into account the interactions of the planets and the relativistic corrections.

3.4 Transformation of the Hamiltonian in heliocentric coordinates
As already said, in the following we limit ourselves to study the problem of three bodies. In
this case, we assign a privileged role to the central star taking into account that its mass m0 is
appreciably higher than that of the planets (i.e. m1,m2 � m0).

3.4.1 Classical Hamiltonian

With simple calculations, we find that, in the barycentric reference system, the classical Hamiltonian
in the heliocentric variables (r,p) becomes

H = H0 + εH1, (3.22)

where

H0 =
2∑
i=1

( 1
2µi

p2
i − G

(m0 +mi)µi
‖ ri ‖

)
,

εH1 = p1 · p2
m0

− G m1m2
‖ r1 − r2 ‖

,

(3.23)

and where µi is the reduced masses of the planet i-th

µi = m0mi

m0 +mi
, i = 1, 2. (3.24)

The Hamiltonian (3.22) depends only by the 12 canonical coordinate r1, r2,p1,p2, which means
that, as expected, eliminating the motion of the center of gravity, we have reduced of 3 the number
of degrees of freedom of the system.

We can notice that the Hamiltonian H0 can be read as the sum of 2 Hamiltonians

H i
0 = 1

2µi
p2
i − G

(m0 +mi)µi
‖ ri ‖

, i = 1, 2 (3.25)
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of two-body problem with reduced mass µi. Thus H i
0 describes the Keplerian motion of the i−th

planet around the star.
The terms H1 contains instead the interaction between the planets. If the mutual distance

‖ r1 − r2 ‖ does not become small, its size relative to the two-body problem Hamiltonian is
proportional to a small factor ε, which can be approximated by

ε ' max
i=1,2

µi
m0

, (3.26)

where µj/m0 ' mj/m0. For example, in the case of the Solar system, ε is well approximated by
the ratio of the mass of Jupiter and of the Sun, which is approximately ε ' 10−3.

The canonical equations for the Hamiltonian (3.22) are

ṙk = pk
µk

+ p3−k
m0

,

ṗk = −G(m0 +mk)µkrk
‖ rk ‖3

− Gmkm3−k
rk − r3−k
‖ rk − r3−k ‖3

,
(3.27)

for k = 1, 2. We can notice that pk are not proportional to the velocity ṙk. This is a consequence
of the fact that the kinetic energy has not a diagonal shape, a property which instead was true for
the coordinates in the absolute reference system.

Finally, being the positions of the planets known, the position of the star x0 is given by

x0 = −
∑2
i=1miri∑2
i=0mi

. (3.28)

3.4.2 Relativistic Hamiltonian

In the barycentric reference system, we find that the relativistic Hamiltonian in the heliocentric
variables (r,p) 2 becomes

H = H0 + εH1 + 1
c2H2, (3.29)

where

H0 =
2∑
i=1

( 1
2µi

p2
i − G

(m0 +mi)µi
‖ ri ‖

)
,

εH1 =p1 · p2
m0

− G m1m2
‖ r1 − r2 ‖

,

(3.30)

2Here we use the same notation (r,p) that we have introduced for the classical Hamiltonian. Of course it is
immediate to observe that they are not the same coordinates. On the other hand, in the following we never use
simultaneously both cases, so there is no risk of confusion.
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H2 =−
2∑
i=1

p4
i

8

(
1
m3

0
+ 1
m3
i

)
− 1

4m3
0

(
p2

1p
2
2 + 2(p1 · p2)2 + 2

2∑
i=1

p2
i (p1 · p2)

)
+

− 3G
2m0

2∑
i=1

mi

‖ ri ‖

(
p2

1 + 2p1 · p2 + p2
2

)
−

2∑
i=1

3Gp2
i

2mi

(
m0
‖ ri ‖

+ m3−i
‖ r1 − r2 ‖

)
+

−
2∑
i=1

7G
2 ‖ ri ‖

pi · (p1 + p2) + 7G
2 ‖ r1 − r2 ‖

p1 · p2 −
2∑
i=1

2∑
j=1

G
2 ‖ ri ‖

(pi · ni)(pj · ni)+

+ G
2 ‖ r2 − r1 ‖

(p1 · n12)(p2 · n12) + G
2m0m1m2
‖ r1 ‖‖ r2 ‖

+
2∑
i=1

G2m0m1m2
‖ ri ‖‖ r1 − r2 ‖

+

+ G
2

2

( 2∑
i=1

m0mi

‖ ri ‖2
(m0 +mi) + m1m2

‖ r2 − r1 ‖2
(m1 +m2)

)
,

where nj = rj/ ‖ rj ‖ and n12 = (r2 − r1)/ ‖ r2 − r1 ‖. As before, the terms H1 contains the
interaction between the planets and, if none of their mutual distance ‖ ri − rj ‖ becomes small, its
size relative to H0 is proportional to the small factor ε given in (3.26). The terms H2 contains the
relativistic corrections and its size relative to H0 is proportional to c−2.

Also in this case, we can notice that the Hamiltonian (3.29) does not depend on r0 and so p0
is constant (in particular p0 = 0 because we are working in the barycentric reference system).

The canonical equations for the Hamiltonian (3.29) are

ṙk =pk
µk

+ p3−k
m0

+ 1
c2

{
p3−k

[
−p

2
1 + p2

2
2m3

0
−

2∑
i=1

7G
2 ‖ ri ‖

+ 7G
2 ‖ r1 − r2 ‖

]
+

+ pk

[
−p

2
k

2

(
1
m3

0
+ 1
m3
k

)
−
p2

3−k
2m3

0
− 7G
‖ rk ‖

− 3G
mk

(
m0
‖ rk ‖

− m3−k
‖ r1 − r2 ‖

)]
+

+ (p1 + p2)
[
−p1 · p2

m3
0
− 3G
m0

2∑
i=1

mi

‖ ri ‖

]
+G(p3−k · n12)

2 ‖ r1 − r2 ‖
n12+

− G
2 ‖ rk ‖

( 2∑
i=1

pi · nk

)
nk −

G(p3−k · n3−k)
2 ‖ r3−k ‖

n3−k

}
(3.31)

ṗk =− G(m0 +mk)µkrk
‖ rk ‖3

− Gmkm3−k
rk − r3−k
‖ rk − r3−k ‖3

− 1
c2

{
rk
‖ rk ‖3

[
3Gmk

2m0
(p2

1 + p2
2 + 2p1 · p2)+

+ 3Gp2
km0

2mk
+ 7G

2 pk · (p1 + p2) + 3G(pk · rk)
2 ‖ rk ‖2

((p1 + p2) · rk)+

− G2m0m1m2

( 1
‖ r3−k ‖

+ 1
‖ r1 − r2 ‖

)
− G

2m0mk(m0 +mk)
‖ rk ‖

]
+ rk − r3−k
‖ r1 − r2 ‖3

[ 2∑
i=1

3Gp2
im3−i

2mi
+

− 7Gp1 · p2
2 − G

2m1m2(m1 +m2)
‖ r1 − r2 ‖

− G2m0m1m2

( 1
‖ r1 ‖

+ 1
‖ r2 ‖

)
− 3G

2 (p1 · n12)(p2 · n12)
]
+

−
2∑
i=1

(G(nk · pi)
2 ‖ rk ‖2

− G(pi · n12)
2 ‖ r1 − r2 ‖2

)
p3−i −

G(pk · nk)
‖ rk ‖2

pk
}
,

(3.32)
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for k = 1, 2. Note the positions of the planets, the position of the star x0 is given by

x0 = −

∑2
i=1miri

[
1 + 1

c2

(
p2
i

2m2
i
− G

(
m0

2‖ri‖ + m3−i
2‖ri−r3−i‖

))]
∑2
i=0mi + 1

c2

[∑2
i=0

(
p2
i

2µi + pi·p3−i
2m0

− Gmim0
‖ri‖ − G

mim3−i
2‖ri−r3−i‖

)] . (3.33)

3.5 Numerical integration
Numerical solution of ordinary differential equations is the most important technique in continuous
time dynamics. Since most ordinary differential equations can not be solved analytically, numerical
integration is the only way to obtain information about the trajectory. Many different methods
have been proposed and used in an attempt to solve accurately various types of ordinary differential
equations. All these discretize the differential system to produce a difference equation or map. The
methods obtain different maps from the same differential equation, but they have the same aim,
i.e. that the dynamics of the maps should correspond closely to the dynamics of the differential
equations.

Let the phase space Ω be a domain in R2n. The smooth Hamiltonian function H ∈ C1(Ω) gives
rise to the Hamiltonian system of ODE’s

qi = ∂H

∂pi
, pi = −∂H

∂qi
(3.34)

for i = 1, ..., n, or, in a more compact form,

ẋ = JHx(x), J =
[

0 I
−I 0

]
(3.35)

where x = [qT ,pT ]T , I is the identity matrix and where the subscript x denotes differentiation.
Let h > 0 be fixed. A (single-step) numerical scheme to solve such a system consists of a

function ψψψH,h : Ω → Ω depending smoothly on the step-size h and on the Hamiltonian H. Given
an initial condition (p0,q0), the approximate solution at time mh defined as (qm,pm) can be
computed iteratively by

(qm,pm) = ψψψH,h(qm−1,pm−1). (3.36)

Now, let φφφt be the flow of (3.35). To approximate φφφt(x) in the interval [0, t], at least heuristically,
the idea is to divide [0, t] into N parts and to iterate ψψψH,h with a step size h = t/N for N times.

The method ψψψH,h is said to be of order r ∈ N if, as h→ 0,

‖ φφφh(x)−ψψψH,h(x) ‖= O(hr+1) (3.37)

for any x ∈ Ω. It is simple to prove that the total accumulated error is order O(hr). Indeed, we
would perform O(h−1) computations, so

‖ φφφh(x)−ψψψNH,h(x) ‖= O(hr+1) ·O(h−1) = O(hr). (3.38)

One of the most used methods is the classical Runge-Kutta method, which I present briefly. For
generality, we consider the non-autonomous initial value problem

ẏ = f(t,y), y(t0) = y0, (3.39)
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where y is an unknown function (scalar or vector) of time t which we would like to approximate.
At the initial time t0 the corresponding y-value is y0. The function f and the data t0, y0 are given.

Pick a step-size h > 0. The classical Runge-Kutta method of order 4 (RK4 ) is defined as

ym+1 = ym + 1
6h (k1 + 2k2 + 2k3 + k4) (3.40)

tm+1 = tm + h (3.41)

for m = 0, 1, 2, 3, ..., where

k1 = f(tm,ym),

k2 = f
(
tm + 1

2h,ym + h

2k1

)
,

k3 = f
(
tm + 1

2h,ym + h

2k2

)
,

k4 = f(tm + h,ym + hk3). (3.42)

Here ym+1 is the Runge-Kutta approximation of y(tm+1), and the value ym+1 is determined by
the previous value ym plus the weighted average of four increments, where each increment is the
product of the size of the interval h and an estimated slope specified by function f on the right-hand
side of the differential equation. It is simple to prove that the classical Runge-Kutta method is a
fourth-order method, meaning, as we have seen, that the local truncation error is on the order of
O(h5), while the total accumulated error is order O(h4).

In simulations of conservative systems, the energy H is usually monitored as a check on the
calculation. As we have seen, the energy should be a constant of motion and should not change.
However, in numerical simulations the energy might fluctuate on a short time scale and increase or
decrease on a very long time scale due to numerical integration artifacts that arise with the use of a
finite time step h. For this reason, in the following we use the conservation of the total energy H as
a useful checks of the accuracy of the numerical simulations. The gradual change in the total energy
of a closed system over time is called energy drift. Moreover, we can also use the conservation of
the total angular momentum to have another check of the accuracy of the numerical simulations.

3.6 Application to some extrasolar systems
We consider some extrasolar systems consisting of a central star and two planets rotating around it,
such that the two planets are not in resonance, in order to use in the following the principle of the
average. We are interested in the evolution of the semi-major axes and of the eccentricities of the
two planets, and in particular we are interested to see if there are significant differences between
the Newtonian and the relativistic case.

The initial orbital elements that characterize the selected systems, and the parameters of their
parents star, come from the Jean Schneider Encyclopedia of Extrasolar Planets3.

We proceed as follows. First, from the initial orbital elements which describe the extrasolar
system, we calculate the canonical coordinates in a heliocentric reference system, i.e. the position
ri = (rx,i, ry,i, rz,i) and the momentum pi = (px,i, py,i, pz,i) of the i-planet, for i = 1, 2. Then we
integrate the equation of motions (3.27) and (3.31)-(3.32) using the classical Runge-Kutta method

3http://exoplanet.eu
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(3.40) and finally, at each step or after a fixed period, we calculate the new orbital elements in
order to obtain the evolution of the semi-major axes and of the eccentricities of the two planets.

To integrate the equations of motion, I implemented a program in the C language with a 15
digit precisions.

To have a check on the quality of the numerical integration, in both cases we calculate at each
step also the drift of the total energy of the system, given by the formula

∆H(t) = H(0)−H(t)
H(0) . (3.43)

Obviously, the integration is to be considered good if this quantity remains small. To get good
results, we observe that the integration step must be very small if the period of revolution of the
inner planet around the star is small.

To switch from canonical coordinates to the orbital elements, and vice versa, we have to in-
troduce the concept of the osculating orbit. The osculating orbit of an object in space at a given
moment in time is the gravitational Kepler orbit (i.e. the ellipse in heliocentric coordinate) that it
would have about its central body if perturbations were not present, i.e. the orbit that coincides
with the current orbital state vectors (position and velocity). An osculating orbit and the object’s
position upon it can be fully described by the six standard Keplerian orbital elements (osculat-
ing elements), which are easy to calculate as long as one knows the object’s position and velocity
relative to the central body.

The osculating elements would remain constant in the absence of perturbations, but the real
astronomical orbits experience perturbations that cause the osculating elements to evolve. Thus,
if we assume that the variations of the osculating orbits are slow and regular, we can describe
the motion of the planets thinking of osculating ellipses whose parameters vary slowly over time.
Indeed, suppose that at a given instant we can “turn off” the interactions between the planets and
the relativistic corrections, so that the Hamiltonian of our system is reduced to H0. From this
moment, each planet moves on a Keplerian orbit with orbital elements aj(t0), ej(t0), ...: the ellipse
covered by the planet from that moment is called the osculating orbits at time t0. Obviously,
the real motion of the planet will be very different from being an ellipse, but if we repeat the
procedure at the time t1 = t0 + τ , where τ is small time increment, we obtain new orbital elements
aj(t1), ej(t1), ... which describe a new osculating orbit.

The idea is to use the osculating orbits to make these changes of coordinates, i.e. we suppose
that the orbit of each planets is equal to its osculating orbit. With this assumption, to make these
changes of coordinates we can simple use the relationships between the orbital elements and the
canonical coordinates given in the case of the two-body problem. In particular, the formulæ to
change from orbital elements to canonical coordinates (r,p) are given in chapter 1. Vice-versa,
to change from canonical coordinates to orbital elements, we consider for example the motion of
one of the two planets, having mass m, around the star of mass m0. We introduce the angular
momentum M = (M1,M2,M3) and the energy E of the system:

M = r× µṙ, M =
√
M2

1 +M2
2 +M2

3 ,

E = 1
2µṙ · ṙ− G(m0 +m)

‖ r ‖ ,
(3.44)

where µ is the reduced mass (3.24).
Using the expressions from (1.33) to (1.36), it is simple to prove that the semi-major axis a and
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the eccentricity e are given by the following formulæ

a = −G(m0 +m)
2E ,

e =
√

1− M2

aG(m0 +m) ,
(3.45)

and that the inclination i is given by

cos i = M3
M

, sin i =

√
M2

1 +M2
2

M
. (3.46)

If i 6= 0 or π, the longitude of the ascending node Ω is given by

cos Ω = − M2
M sin i , sin Ω = M1

M sin i . (3.47)

If i = 0 or π, we assume for the following that Ω = 0.
If e 6= 0, the eccentric anomaly E is given by

cosE = a− r
e a

, sinE = r · ṙ
e
√
aG(m+m0)

, (3.48)

where the second relation is obtained by calculating r · ṙ and where r is given by

r =
√
r2
x + r2

y + r2
z . (3.49)

The true anomaly ν is given by

cos ν = e− cosE
1− e cosE , sin ν =

√
1− e2 sinE
1− e cosE . (3.50)

If e 6= 0, to define the argument of pericenter ω we need to pass to the orbital planeq1
q2
0

 =

 cos Ω sin Ω 0
− sin Ω cos i cos Ω cos i sin i
sin Ω sin i − cos Ω sin i cos i


rxry
rz

 . (3.51)

It is simple to prove that
ω = u− ν (3.52)

where u is
cosu = q1√

q2
1 + q2

2

, sin u = q2√
q2

1 + q2
2

. (3.53)

Finally, the relationship between the momentum and the velocity is given in the Newtonian case
by

p = m0m

m0 +m
ṙ, (3.54)
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and in the relativistic case (see (3.63)) by

p = m0m

m0 +m
ṙ + 1

c2

{
m0m

m0 +m

[( 1
2m3

0
+ 1

2m3

)
(ṙ · ṙ)ṙ+

+ G
‖ r ‖

(3m
m0

+ 3m0
m

+ 7
)

ṙ + G
‖ r ‖2 (r · ṙ)ṙ

]}
.

(3.55)

In most cases of extrasolar systems, the inclinations and the initial mean anomaly of the two
planets aren’t known. In these cases, as regards the inclination we decide to put i = 0 for both the
planets. With this choice, it is simple to prove that rz,1 = rz,2 = 0 and pz,1 = pz,2 = 0 for any t,
i.e. the system is coplanar for any t, so the dynamic is greatly simplified. The choice of the initial
mean anomaly M0 does not affect much on the dynamics of the system over a long time, so it can
be chosen in an arbitrary manner or, when it is possible, with the formula:

M0 =
√
G(m0 +m)a−3/2 t. (3.56)

The relation between the mean anomaly and the eccentric anomaly is given by the Kepler equation
(1.24). To solve the Kepler equation, it can be also useful to use numerical method, as the bisection
method or the Newton’s method, which I show briefly. Suppose we have to find an approximate
solution of the equation

f(x) = 0, (3.57)
where f is a real-valued function. If f is a differentiable function such that f(a) · f(b) ≤ 0 and
such that f ′(x) 6= 0 for any x ∈ [a, b], then an approximate solution of equation (3.57) can be
constructed using the following algorithm

xn+1 = xn −
f(xn)
f ′(xn) , ∀n ≥ 0 (3.58)

where x0 is an arbitrary initial valued in [a, b]4.
For the following, we adopt the astronomical unit AU (i.e. the average Earth-Sun distance) as

unit of length, the year (yr) as time unit and the Jupiter mass (MJ) as mass unit:

1AU = 149 597 871 000m,
1 yr = 31 560 000 s,

1MJ = 1.8986× 1027 Kg.
(3.60)

With these units, the gravitational constant G and the speed of light in empty space c are

G =3.76242× 10−2 AU3

MJ · yr2 ,

c =63 197.79 AU
yr

.

(3.61)

4Theorem Let f ∈ C2([a, b]) a real-valued function such that f(a) · f(b) ≤ 0. If f satisfies the conditions

0 < d ≤ f ′(x), 0 ≤ f ′′(x) ≤M (3.59)

for any x ∈ [a, b], then there exist exactly one fixed point x̃ such that f(x̃) = 0 and the sequence {xn}∞n=0 defined by
the process (3.58) with an arbitrary starting point x0 ∈ [a, b], converges to x̃.
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The extrasolar systems that we have studied are the following:

• HD 190360

Stellar mass= 1089.2544MJ

Integration step size=5× 10−5 (yr)

HD 190360 b HD 190360 c
mass 1.502± 0.13MJ 0.057± 0.0015MJ

a 3.92± 0.02AU 0.128± 0.002AU
e 0.36± 0.03 0.01± 0.1
ω 12.4± 9.3 deg 153.7± 32 deg

(Chosen) M0 5 deg 20 deg
Orbital period 2891± 85 day 17.1± 0.0015 day

• HD 11964

Stellar mass= 1178.28MJ

Integration step size=1× 10−4 (yr)

HD 11964 b HD 11964 c
mass 0.622± 0.056MJ 0.079± 0.01MJ

a 3.16± 0.19AU 0.229± 0.013AU
e 0.041± 0.017 0.3± 0.17
ω 155 deg 102 deg

(Chosen) M0 5 deg 180 deg
Orbital period 1945± 26 day 37.91 day

• HD 169830

Stellar mass= 1466.304MJ

Integration step size=2.5× 10−4 (yr)

HD 169830 b HD 169830 c
mass 2.88MJ 4.04MJ

a 0.81AU 3.6AU
e 0.31± 0.01 0.33± 0.02
ω 148± 2 deg 252± 8 deg

(Chosen) M0 5 deg 5 deg
Orbital period 225.62± 0.22 day 2102± 264 day
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• HD 12661

Stellar mass= 1120.6752MJ

Integration step size=2.5× 10−4 (yr)

HD 12661 b HD 12661 c
mass 2.3MJ 1.57MJ

a 0.83AU 2.56AU
e 0.377± 0.008 0.031± 0.022
ω 296± 1.5 deg 165 deg

(Chosen) M0 5 deg 5 deg
Orbital period 263.2± 1.2 day 1708± 14 day

• BD 082823

Stellar mass= 775.0464± 73.3152MJ

Integration step size=1× 10−5 (yr)

BD 082823 b BD 082823 c
mass 0.045± 0.007MJ 0.33± 0.03MJ

a 0.056± 0.0002AU 0.68± 0.02AU
e 0.15± 0.15 0.19± 0.09
ω 30± 100 deg 127± 21 deg

(Chosen) M0 5 deg 15 deg
Orbital period 5.6± 0.02 day 237.6± 1.5 day

• HIP 5158

Stellar mass= 816.9408± 21.995MJ

Integration step size=2.5× 10−4 (yr)

HIP 5158 b HIP 5158 c
mass 1.44± 0.14MJ 15.04± 10.55MJ

a 0.89± 0.14AU 7.7± 1.88AU
e 0.54± 0.04 0.14± 0.1
ω 70± 4 deg 142± 75 deg

(Chosen) M0 5 deg 50 deg
Orbital period 345.63± 1.99 day 9081± 318 day

In the following figures, the red curves are for the point-mass planets interacting mutually
through Newtonian forces, while the blue curves are for generalized model of motion, including
the general relativistic corrections. The execution times of the programs used for the numerical
integration of the equations of motion are given in Table 6.1.
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(a) Eccentricity planet HD 190360 b (b) Eccentricity planet HD 190360 c

(c) Semi-major axis planet HD 190360 b (d) Semi-major axis planet HD 190360 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −1.8× 10−5

(f) The relative error of the Hamiltonian in the relativistic
case - order: −1.8× 10−5

Figure 3.1: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system HD 190360.
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(a) Eccentricity planet HD 11964 b (b) Eccentricity planet HD 11964 c

(c) Semi-major axis planet HD 11964 b (d) Semi-major axis planet HD 11964 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −4× 10−5

(f) The relative error of the Hamiltonian in the relativistic
case - order: −4× 10−5

Figure 3.2: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system HD 11964.
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(a) Eccentricity planet HD 169830 b (b) Eccentricity planet HD 169830 c

(c) Semi-major axis planet HD 169830 b (d) Semi-major axis planet HD 169830 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −2.5× 10−7

(f) The relative error of the Hamiltonian in the relativistic
case - order: −2.5× 10−7

Figure 3.3: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system HD 169830.
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(a) Eccentricity planet HD 12661 b (b) Eccentricity planet HD 12661 c

(c) Semi-major axis planet HD 12661 b (d) Semi-major axis planet HD 12661 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −1× 10−8

(f) The relative error of the Hamiltonian in the relativistic
case - order: −1.4× 10−8

Figure 3.4: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system HD 12661.
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(a) Eccentricity planet BD 082823 b (b) Eccentricity planet BD 082823 c

(c) Semi-major axis planet BD 082823 b (d) Semi-major axis planet BD 082823 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −1.7× 10−6

(f) The relative error of the Hamiltonian in the relativistic
case - order: −1.6× 10−6

Figure 3.5: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system BD 082823.
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(a) Eccentricity planet HIP 5158 b (b) Eccentricity planet HIP 5158 c

(c) Semi-major axis planet HIP 5158 b (d) Semi-major axis planet HIP 5158 c

(e) The relative error of the Hamiltonian in the Newtonian
case - order: −1.8× 10−7

(f) The relative error of the Hamiltonian in the relativistic
case - order: −1.8× 10−7

Figure 3.6: The long-term secular evolution of eccentricities and semi-major axis of the planets of
the extrasolar system HIP 5158.
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As one can see, in some cases the difference between predictions of General Relativity and
by the classical model are significant, in some other cases both theories give practically the same
outcome. In particular we can do the following considerations. As expected, if both planets are
very far from the central star (as for example in the cases HD 169830, HD 12661 and HIP 5158),
then the relativistic corrections are insignificant. Instead, if the inner planet is close to the star (as
for example in the cases HD 190360, HD 11964 and BD 082823), then the relativistic corrections
are very important, in particular for the inner-most planet.

As regards the semi-major axis, it is important to note that its value always oscillates around
the initial value, i.e. the average value remains constant5. This fact, together with the average
principle, will be used in following chapters to simplify the two Hamiltonians.

In all systems, it is interesting to note the periodic evolution in eccentricities which shows an
almost perfect coupling between them, i.e. both elements oscillates with the same period. This is
a simple consequence of the conservation of the total angular momentum M of the system, which
is equal to the summation of the angular momentum of the planets in the heliocentric reference
system (see (3.18) - we remember that p0 = 0). In particular, it is simple to prove that (see section
5.2)

‖M ‖= µ1

√
G(m0 +m1)a1

√
1− e2

1 cos i1 + µ2

√
G(m0 +m2)a2

√
1− e2

2 cos i2.

The conservation of ‖ M ‖, the fact that i1 = i2 = 0 and the fact that a1 and a2 are almost
constants up to the second order in the masses (they oscillate slightly around an average value)
explain the coupling between the eccentricities.

Looking at the element of the examined systems, we may conclude that the corrections become
very important for systems with the innermost planet close to the star, with other body relatively
distant. The results show in fact that the relativistic effects can accumulate over time to induce
substantial changes in the dynamics. In particular, we note that where the relativistic effects are
important, they seem to provide “stability” to the system. In fact, if we consider the case of the
eccentricity, we note that in the relativistic case it remains closer to the average value than in the
Newtonian case. Furthermore, the oscillation frequency of the eccentricity in the relativistic case
is greater than that in the classical case.

These results are in agreement with those obtained by Laskar (Laskar (2008)) in the case of
the Solar system. Quoting Laskar: “I have thus repeated the previous simulations in absence of
relativity, expecting to find a more stable system. But the result was the opposite, ...”. “Indeed, as
we have demonstrated here, the contribution of general relativity changes in a considerable manner
the behavior of the Solar System dynamics.” “The contribution of GR is thus essential in order to
ensure the relative stability of Mercury.”.

Finally, we can do some considerations on the numerical method that we have used. As already
mentioned previously, to obtain good results, and in particular to have a very small drift of energy,
it is necessary to use a very small time step. In this case, the numerical integration becomes CPU
consuming and the time required to integrate a system becomes very long (see Table 6.1). For
this reason, in the next chapters, we look for a “semi-analytical” integrations of the Hamiltonian
equations, using the tools provided by Hamiltonian system. Before doing this, however, we must
try to simplify the relativistic equations.

5It can be proven that if there are no resonances between the mean motion frequencies of the planets, then the
mean values of the semi-major axis are constant up to the second order in the masses. For more details, see Theorem
of Poisson in section 6.1.
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3.7 Simplification of the relativistic Hamiltonian
As already mentioned, we want to simplify the relativistic problem skipping the relativistic correc-
tions due to the mutual interactions between the two planetary masses, i.e. we assume that the
mutual interaction between the two planets is a Newtonian interaction. We will see that this as-
sumption leads to a substantial simplification of the relativistic Hamiltonian. At the same time, the
dynamic obtained by this simplified Hamiltonian is very similar to that described by the real one,
at least numerically in the systems that we have considered (see Brumberg (1991) and Migaszewski
and Goździewski (2008) for more details).

Before proceeding, we need to discuss briefly the nature of the canonical momenta (3.3) ap-
pearing in the Hamiltonian (3.2). As we have seen, Post-Newtonian Hamiltonians are derived from
Lagrangian (2.73) in which the generalized velocities appear not only in the kinetic terms of the
Newtonian portion of the Lagrangian, but also in the relativistic perturbation. As a consequence,
after switching to the Hamiltonian formulation via Legendre transformation procedure, the post-
Newtonian canonical Hamiltonian momenta will differ from the Newtonian ones by terms of order
1/c2. This discrepancy will carry over to any subsequent canonical transformation, including the
introduction of Delaunay elements. However, in the present work we are concerned with the secular
variations of orbital elements for which the discrepancy above is of little consequence (see Richard-
son & Kelly (1988) and Heimberger & al. (1990) for a detailed analysis of the connection between
Newtonian and Post-Newtonian Delaunay orbital elements). For this reason, in the following we
will consider the relativistic momenta as Newtonian ones.

The simplification of the problem can be justified as follows. As we have seen, the Hamiltonian
that describes the motion of the bodies can be written as the sum of two parts: a main part, which
takes account of the Newtonian interactions between the planets, and a perturbation part, which
takes into account the relativistic corrections to the Newtonian gravity. In this second part, we
can notice that the relativistic corrections due to the mutual interactions between the star and
the two planets are greater than those due to mutual interaction between the two planets, because
m1,m2 � m0 and because the mutual distance ‖ r1 − r2 ‖ never becomes small. For this reason,
we have decided to simplify the problem assuming that that the mutual interactions between the
star and the two planets are of relativistic type (i.e. we consider the relativistic corrections to the
Newtonian gravity) and that the mutual interaction between the two planets is only of Newtonian
type (i.e. we skip the relativistic corrections caused by the two planetary masses). In other words,
we assume that the motion of three bodies is not affected by the relativistic corrections to the
Newtonian gravity due to the mutual interactions between the two planets.

It is important to emphasize that this problem is a simplification of a real problem, because the
relativistic corrections to the Newtonian gravity due to the mutual interactions between the two
planets are present even if they are very small.

To construct the simplified relativistic Hamiltonian function, which describes the dynamics of
the planetary system of which we are interested, we first need the relativistic Hamiltonian of the two
bodies in heliocentric coordinates. The relativistic Hamiltonian of a system of two bodies having
mass m0 and m1 is:

H = 1
2m0

y2
0 + 1

2m1
y2

1 − G
m0m1
r01

− 1
8c2

(
y4

0
m3

0
+ y4

1
m3

1

)
− 3G

2c2r01

(
m1y

2
0

m0
+ m0y

2
1

m1

)
+

− G
2c2r01

[7(y0 · y1) + (y0 · n01)(y1 · n01)] + G
2m0m1(m0 +m1)

2c2r2
01

.

(3.62)
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Eliminating from it the motion of the center of inertia (i.e. m0x0 + m1x1 = 0 and y0 + y1 = 0)
and passing in heliocentric coordinates:

r0 =x0, r = x1 − x0, p0 = y0 + y1 = 0,

p = y1 = m0m1
m0 +m1

v + 1
c2

{
m0m1
m0 +m1

[( 1
2m3

0
+ 1

2m3
1

)
v2v+

+ G
‖ r ‖

(3m1
m0

+ 3m0
m1

+ 7
)

v + G
‖ r ‖(n · v)v

]}
,

(3.63)

where n = r/ ‖ r ‖, p is the momentum of the relative motion and v = ṙ is the astrocentric velocity
of the body 1, the Hamiltonian function becomes

H =p2

2

( 1
m0

+ 1
m1

)
− Gm0m1

‖ r ‖ −
p4

8c2

( 1
m3

0
+ 1
m3

1

)
− 3Gp2

2c2 ‖ r ‖

(
m1
m0

+ m0
m1

)
+

− G
2c2 ‖ r ‖

(
7p2 + (p · n)2

)
+ G

2m0m1(m0 +m1)
2c2 ‖ r ‖2 .

(3.64)

To simplify the notation, for each planet-star pair we define the following quantities:

µi = m0mi

m0 +mi
, βi = G(m0 +mi), υi = m0mi

(m0 +mi)2

γ1,i = 1− 3υi
8 , γ2,i = βi(3 + υi)

2 , γ3,i = βiυi
2 , γ4,i = β2

i

2 .

(3.65)

where i = 1, 2.
The simplified relativistic Hamiltonian can be construct by adding to the classic Hamiltonian

(3.22) the relativistic corrections to the Newtonian gravity due to the mutual interaction between
the star and the two planets. In particular, we assume that the relativistic corrections to the
Newtonian gravity, due to the mutual interactions between the star and one of the two planets, are
precisely the relativistic correction present in the relativistic Hamiltonian (3.64) of the two bodies
in heliocentric coordinates. Thus, in a barycentric inertial reference system, the Hamiltonian which
we are looking for is expressed as the sum of three terms

H = H0 + εH1 + 1
c2H2, (3.66)

where H0 describes the Keplerian motion of the 2 planets around the star, εH1 is for the mutual
Newtonian point-mass interactions between planets and 1

c2H2 is for the general (Post-Newtonian)
relativistic corrections to the Newtonian gravity (the relativistic corrections due to the masses of
the planets are skipped).

The terms H0, εH1 and 1
c2H2 are expressed by

H0 =
2∑
i=1

( 1
2µi

p2
i − G

m0mi

‖ ri ‖

)
,

εH1 =
(p1 · p2

m0
− G m1m2
‖ r1 − r2 ‖

)
,

1
c2H2 = 1

c2

2∑
i=1

[
−γ1,i
µ3
i

P 4
i −

γ2,i
µi

P 2
i

‖ ri ‖
− γ3,i

µi

(ni ·Pi)2

‖ ri ‖
+ γ4,iµi

1
‖ ri ‖2

]
,

(3.67)
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where

pi = mi(ṙi + ṙ0),

Pi = µiṙi + 1
c2µi

[
4γ1,iṙ

2
i ṙi + 2γ2,i

‖ ri ‖
ṙi + 2γ3,i

‖ ri ‖
(ni · ṙi)ṙi

]
,

(3.68)

with i = 1, 2, and P 2
i = Pi ·Pi.

Hence, in the Hamiltonian (3.66), we put

Pi = µiṙi (3.69)

with the accuracy of O(c−2) and the Hamiltonian is conserved up to the order O(c−4).
Obviously, the Hamiltonian H2 can be read as the sum of 2 Hamiltonians

H2 = H1
2 +H2

2 , (3.70)

where H i
2 contains only the relativistic term due to the interaction between the star and the i-th

planet.
Using the fact that p0 = m0ṙ0 +m1(ṙ0 + ṙ1) +m2(ṙ0 + ṙ2) = 0, i.e.

ṙ0 = − m1ṙ1 +m2ṙ2
m0 +m1 +m2

, (3.71)

it is simple to prove that
Pi = pi + µi

m0
p3−i (3.72)

for i = 1, 2. Then, the Hamilton’s equation for the Hamiltonian (3.66) are

ṙi =pi
µi

+ p3−i
m0
− 2
c2

{
Pi

[
2γ1,i
µ3
i

P 2
i + γ2,i

µi ‖ ri ‖

]
+ P3−i

m0

[2γ1,3−i
µ2

3−i
P 2

3−i+

+ γ2,3−i
‖ r3−i ‖

]
+γ3,i
µi

(ni ·Pi)ni
‖ ri ‖

+ γ3,3−i
m0

(n3−i ·P3−i)n3−i
‖ r3−i ‖

}
,

ṗi =− G(m0 +mi)µiri
‖ ri ‖3

− Gmim3−i
ri − r3−i
‖ ri − r3−i ‖3

− 1
c2

{
ri
[
γ2,i
µi

P 2
i

‖ ri ‖3
+

− 2γ4,iµi
‖ ri ‖4

+ 3γ3,i
2µi

(ni ·Pi)2

‖ ri ‖3
]
−2γ3,i

µi

ni ·Pi

‖ ri ‖3
Pi

}
,

(3.73)

where Pi is given in (3.72).
We want to compare the dynamics described by these equations of motion respects to the real

one. Thus, we integrate equations (3.73) with the classical Runge-Kutta method, using the same
initial condition used previously. In the following figures, the blue curves are for the relativistic
motions described by equations (3.31)-(3.32), while the green curves are for the simplified relativistic
motions described by equations (3.73).

As one can see, in all systems, there is practically no difference between the two cases. Moreover,
the simplified relativistic Hamiltonian, although less exact than the relativistic Hamiltonian, is
computationally much more affordable (see Table 6.1). These facts justify the simplification that
we made earlier.
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(a) Eccentricity planet HD 190360 b (b) Eccentricity planet HD 190360 c

(c) Eccentricity planet HD 11964 b (d) Eccentricity planet HD 11964 c

(e) Eccentricity planet HD 169830 b (f) Eccentricity planet HD 169830 c

56



(g) Eccentricity planet HD 12661 b (h) Eccentricity planet HD 12661 c

(i) Eccentricity planet BD 082823 b (j) Eccentricity planet BD 082823 c

(k) Eccentricity planet HIP 5158 b (l) Eccentricity planet HIP 5158 c

Figure 3.7: Comparison of the evolution of the eccentricity in the case of the relativistic Hamiltonian
(3.29) and in the case of the simplified one (3.66). See text for more details.
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(a) Semi-major axis planet HD 190360 b (b) Semi-major axis planet HD 190360 c

(c) Semi-major axis planet HD 11964 b (d) Semi-major axis planet HD 11964 c

(e) Semi-major axis planet HD 169830 b (f) Semi-major axis planet HD 169830 c
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(g) Semi-major axis planet HD 12661 b (h) Semi-major axis planet HD 12661 c

(i) Semi-major axis planet BD 082823 b (j) Semi-major axis planet BD 082823 c

(k) Semi-major axis planet HIP 5158 b (l) Semi-major axis planet HIP 5158 c

Figure 3.8: Comparison of the evolution of the semi-major axis in the case of the relativistic
Hamiltonian (3.29) and in the case of the simplified one (3.66). See text for more details.
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Chapter 4

Hamiltonian systems

In the previous chapter, we have integrated the Hamilton’s equations both in the Newtonian case
that in the Relativistic one, using the classical Runge-Kutta method. Furthermore, we have found
a simplification of the relativistic Hamiltonian (3.29). In particular, we have seen that, at least
numerically in the systems that we have considered, the dynamic described by the simplified Hamil-
tonian (3.66) is very similar to the real one. For these reasons, in the following we construct the
semi-analytical solution only for the classical and for the simplified relativistic Hamiltonian (i.e.
we don’t study analytically the real relativistic Hamiltonian (3.29)).

However, to obtain satisfactory results it is necessary to use a very small integration step and
this leads to a technical problem: the direct integrations over the secular time-scale are CPU
intensive.

To solve this problem, the idea is to integrate the equations “semi-analytically”, using the
various tools provided by Hamiltonian’s theory and by perturbation theory. In this chapter we
present the tools that we will use in following chapters.

4.1 Integrable Hamiltonian
The solution of the system of differential equations

dri
dt = Fi(r), (4.1)

with i = 1, ..., n and r = (r1, ..., rn), can be written in the implicit form as a system of integral
equations ∫ r(t)

r(0)

dri
Fi(r) =

∫ t

0
dt. (4.2)

The system (4.1) is said to be integrable by quadratures, if the integrals on the left-hand side of
(4.2) can be explicitly computed, and the resulting relationships F̃i(r(t))− F̃i(r(0)) = t, where F̃i
are the primitives of 1/Fi, can be inverted, giving r(t) as an explicit function of t.

From the general theory of differential equation we learn that the knowledge of enough first
integrals1 allows us to perform a complete integration. In particular, for Hamiltonian system, the

1A dynamical variable Φ(q,p) is said to be a first integral if it keeps its value constant under the Hamiltonian
flow generated by H(q,p), i.e. Φ̇ = {Φ, H} = 0.
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theorem of Liouville states that an n-degree of freedom Hamiltonian is integrable if it admits n
independent and in involution first integral Φ1, ...,Φn

2.

Theorem 1. Assume that an autonomous canonical system with n degrees of freedom and with
Hamiltonian H(q,p) possesses n independent first integral {Φ1(q,p), ...,Φn(q,p)} forming a com-
plete involution system. Then the system is integrable by quadratures. More precisely, one can
construct a canonical transformation (q,p) → (α,Φ) such that the transformed Hamiltonian de-
pends only to the new momenta Φ1, ...,Φn, and the solutions are expressed as

Φj(t) = Φj,0, αj(t) = αj,0 + t
∂H

∂Φ

∣∣∣∣
(Φ1,0,...,Φn,0)

, 1 ≤ j ≤ n, (4.3)

with αj,0 and Φj,0 determined by the initial data.

The local canonical transformation to the new variables (α,Φ) is constructed by quadratures
in the following way. With the non restrictive hypothesis

det
((Φ1, ...,Φn)

(p1, ..., pn)

)
6= 0, (4.4)

the wanted canonical transformation is implicitly defined by

αj = ∂S

∂Φj
(Φ,q), pj = ∂S

∂qj
(Φ,q), 1 ≤ j ≤ n (4.5)

where
S(Φ,q) =

∫ ∑
j

pj(Φ,q)dqj (4.6)

and where p1(Φ,q), ...p1(Φ,q) are obtained by inversion of Φ1(q,p), ...,Φn(q,p).
On the other hand, although it is easier to find constants of motion than to actually solve the

Hamiltonian equations, there is no general recipe on how all constant of motion can be found. In
particular, if only m constants of motion are known with m < n, it is hard to know if additional
constants of motion are still to be found or really don’t exist. In effect, as stated by Poincaré,
integrability itself turns out to be an exceptional property.

4.1.1 The theorem of Arnold-Jost

The Arnold-Jost theorem is an extension of Liouville’s theorem. Arnold proved that, in the hy-
pothesis of Liouville’s theorem and if the n−dimensional surface implicitly defined by the constant
of motion Φ1, ...,Φn is compact, it is possible to introduce canonical momenta I (called action of
the system) and coordinates θ such that the coordinates θ1, ..., θn are angles cyclically defined on
the interval [0, 2π]. A set of canonical variables (I,θ), where the coordinates θ are angles, will be
generically called action-angle variables.

2A system of r independent function {Φ1(q,p), ...,Φr(q,p)} is said to be an involution system if the Poisson
bracket between any two functions vanishes, i.e. {Φj ,Φk} = 0 for j, k = 1, ..., r. It can be proven that an involution
system contains at most n independent functions, where n is the number of degrees of freedom.
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Theorem 2. Let the Hamiltonian H(q,p) possesses an involution system Φ1, ...,Φn of first inte-
grable so that it is integrable in Liouville’s sense. Let c = (c1, ..., cn) ∈ Rn be such that the level
surface determined by the equations Φ1(q,p) = c1, ...,Φn(q,p) = cn contains a compact and con-
nected componentMc. Then in a neighborhood U ofMc there are canonical action-angle coordinates
(I, θ) : G × Tn → U(Mc), where G ⊂ Rn is an open neighborhood of c, such that the Hamiltonian
depends only on I1, ..., In, i.e. H = H(I1, ..., In), and the corresponding canonical equations are

Ij(t) = Ij,0, θj(t) = θj,0 + tωj(I1,0, ..., In,0), 1 ≤ j ≤ n (4.7)

where θj,0 and Ij,0 are the initial data, and ωj = ∂H
∂Ij

.

The existence of n constants of motion for a n−degree of freedom Hamiltonian system ensures
that the motion evolves on an n−dimensional surface Mc embedded in 2n−dimensional phase
space. The fact that Φ1, ...,Φn are a complete involution system ensures that the motion can be
decomposed in n independent flows (which do commute) generated by the functions Φ1, ...,Φn, each
considered as a one-degree of freedom Hamiltonian. Moreover, the condition that the surface Mc
is compact implies that Mc is diffeomorphic to Tn and that the individual flows of Φ1, ...,Φn, and
hence global motion, can be decomposed into independent3 periodic cycles, which we denote by
γ1, ..., γn.

To construct the action-angle coordinates, we proceed as follows.
As first thing, we must find the cycles γi (i = 1, ..., n). This is expected to be the hardest part,
because it requires in principle an integration of the system via Liouville’s algorithm applied to the
involution system Φ1, ...,Φn. The action I are then introduced by4

Ii = 1
2π

∮
γi

n∑
j=1

pjdqj , 1 ≤ i ≤ n, (4.10)

where p1(Φ,q), ..., pn(Φ,q) are obtained by inversion of Φ1 = Φ1(q,p), ...,Φn = Φn(q,p) with
respect to Φ1, ...,Φn. The resulting function I1, ..., In depend of course only on Φ1, ...,Φn.

In order to find the angle variables θ1, ..., θn, we apply the theorem of Liouville to the new
involution system I1, ..., In. Thus, writing p as a function of I and q, we define the integral
generating function as

S(I,q) =
∫ n∑

j=1
pj(I,q)dqj (4.11)

and the new coordinates θ are introduced as

θk = ∂S

∂Ik
(I,q), , 1 ≤ k ≤ n. (4.12)

3The cycles γj , γk are said independent if γj can not be continuously deformed into γk, for j 6= k.
4It can be proven that the transformation (q,p)→ (θ, I) is canonical if and only if∮

γk

n∑
j=1

pjdqj =
∮
γk

n∑
j=1

Ijdθj , 1 ≤ k ≤ n. (4.8)

Because all actions I1, ..., In and all angles θj with j 6= k are constant on γk, then the integral on the r.h.s. gives∮
γk

n∑
j=1

pjdqj = Ik

∫ 2π

0
dθk = 2πIk, 1 ≤ k ≤ n. (4.9)
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It can be shown that the transformation (q,p)→ (θ, I) so defined is canonical and the Hamil-
tonian H is dependent on the action I only. Moreover, one can prove that θ1, ..., θn are angles,
namely θi is increased by 2π when a complete cycle γi is followed.

The action-angle variables defined above are not unique: indeed, they depend at least on the
choice of the cycles γ1, ..., γn, which is not unique. It can be proven the following Lemma:

Lemma 1. Let θ, I be action angle variables. New action-angles variables ψ,J are constructed by
composition of the following canonical transformations:

• translation of the action variables and translation of the origin of the angles by a quantity
depending on the torus, namely

Ik = Jk + ck, θk = ψk + ∂S

∂Jk
(J), 1 ≤ k ≤ n (4.13)

where c ≡ (c1, ..., cn) ∈ Rn and where S(J) is an arbitrary differentiable function of the action
variables;

• linear transformation of the action-angle variables by a unimodular matrix5 A:

ψ = Aθ, J =
(
AT
)−1

I. (4.14)

4.1.2 Periodic and quasi-periodic motion on a torus

For completeness, we study briefly the dynamics of a system which is integrable in Arnold-Jost
sense.

We consider the phase space F = G × Tn, where G ⊂ Rn is an open set, q = (q1, ..., qn) ∈ Tn
are angle variables and p = (p1, ..., pn) ∈ G are action variables, and a Hamiltonian function
H = H(p1, ..., pn). As we have seen, the equations of motion are simply

qj(t) = ωj(p1,0, ..., pn,0)t+ qj,0, pj(t) = pj,0, 1 ≤ j ≤ n, (4.15)

where p1,0, ..., pn,0 and q1,0, ..., qn,0 are the initial data and where ωj are the frequencies.
The motion of the angles on a torus depends on the frequencies ωj(p). This leads to introduce

the concept of resonance module.

Definition 2. The resonance moduleMω associated to H is defined by

Mω = {k = (k1, ..., kn) ∈ Zn |k · ω =
n∑
j=1

kjωj = 0}. (4.16)

A relation k · ω is called resonance and the number dimMω is called the multiplicity of reso-
nance6. The latter number actually represents the number of independent resonances to which ω
is subjected. The extreme case are dimMω = 0 and dimMω = n− 1.

Proposition 1. Consider the orbit q(t) given in (4.15) with initial point q0 on Tn, and let Mω

be the resonance module associated to the frequency vector ω. Then the orbit (4.15) is dense on a
torus Tn−dimMω ⊂ Tn.

5A matrix A is said unimodular if it has integer entries and if detA = ±1.
6The dimension dimMω of the resonance module is invariant under linear unimodular changes of the angular

coordinates.
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In particular, ifMω = {0} then the frequencies are said to be nonresonant and the motion is
called quasi-periodic, while if dimMω = n − 1 then the motion on the torus is periodic and the
frequencies are said to be completely resonant.

Consider now a linear transformation

q′ = Mq (4.17)

with a unimodular matrix M . This transformation changes the system q̇ = ω into

q̇′j = ω′, ω′ = Mω (4.18)

so that the change of coordinates induces a change of the frequencies.

Lemma 2. Let ω ∈ Rn be given, and let dimMω > 0. Then there is a unimodular matrix M
such that ω′ = Mω has exactly dimMω vanishing components, while the remaining n − dimMω

components form a non-resonant vector.

In general, the frequencies depend on the torus we consider, namely on the values of the actions
p: in this case, the system is said to be anisochronous. Instead, in the case in which the frequencies
are independent of the value of the actions p, the system is said to be isochronous.

4.2 Delaunay variables
A remarkable application of the Arnold-Jost theorem is the calculation of action-angle variables for
the integrable Hamiltonian of the classical two-body problem. They will be the variables that we
will be later use to study the dynamics of the planetary problem using Hamiltonian perturbation
techniques.

As we have seen, the classical Hamiltonian of a system of two bodies having mass m0 and m1 is

H = 1
2m0

y2
0 + 1

2m1
y2

1 − G
m0m1

‖ x0 − x1 ‖
, (4.19)

where y2
i = yi ·yi, for i = 0, 1. Eliminating from it the motion of the center of inertia (i.e. imposing

that m0x0 +m1x1 = 0 and m0ẋ0 +m1ẋ1 = 0) and passing in heliocentric coordinates

r0 = x0, r = x1 − x0, (4.20)

p0 = y0 + y1 = 0, p = m0m1
m0 +m1

ṙ, (4.21)

where we have used ṙ0 = − m1ṙ
m0+m1

, the Hamiltonian function becomes

H = p2

2µ − G
µ(m0 +m1)
‖ r ‖ , (4.22)

where µ = m0m1
m0+m1

and where p2 = p · p. We can eliminate the mass µ through the transformation

p = µp′, r = r′. (4.23)

To make the transformation (4.23) canonical, we have to divide the Hamiltonian for µ: in this way,
we obtain the Hamiltonian of a point of mass m0 +m1 in a central field of force.
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Figure 4.1: The cycle γθ and γr defined by the constants of motion Γ2 and E. Reprinted from Fig.
3.4 of Giorgilli, Hamiltonian systems.

The Hamiltonian of a point of mass m in a central field of force can be rewritten in polar
coordinates as

H = 1
2

(
p2
r + p2

θ

r2 +
p2
φ

r2 sin2 θ

)
− Gm

r
(4.24)

where r, θ, φ are the usual spherical coordinates respect to the center of force, and pr = ṙ, pθ = r2θ̇
and pφ = r2 sin2 θφ̇ are the corresponding conjugate momenta7.

To calculate the Delaunay variables, we use the following complete involution system of first
integrals

J = pφ, Γ2 = p2
θ + J2

sin2 θ
, E = 1

2

(
p2
r + Γ2

r2

)
− Gm

r
, (4.25)

where Γ is the norm of the angular momentum of the system, J is the component of the angular
momentum vector along the z axis, and E is the total energy of the system (obviously E = H).

7I remember that the relationship between the spherical coordinates r, θ, φ and the Cartesian coordinates x, y, z
are x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ.
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By inversion of (4.25), we get

pφ = J, pθ =
(

Γ2 − J2

sin2 θ

)1/2

, pr =
[
2m

(
E + Gm

r

)
− Γ2

r2

]1/2

. (4.26)

Then we proceed to identify the cycles. The Keplerian case is easier than the general case,
because each of the constants of motion (4.25) defines a cycle.

The function J defines a cycle γφ on the (pφ, φ) plane, which is given by pφ = J and φ ∈ [0, 2π].
The function Γ2 can be considered as the Hamiltonian of a point with unit mass, moving on the

segment [0, π] under the action of the potential V (θ) = J2/ sin2 θ. For Γ2 > Γ2
min = J2 the orbit in

the phase plane (pθ, θ) is a closed line, giving the second cycle γθ (see Fig. 4.1).
The third function can be considered as the Hamiltonian of a point moving on the half line

r > 0 under the action of the potential V ∗(r) = Γ2

2mr2 − Gmr . In particular, the motion on the half
line r is bounded for Emin < E < 0, with Emin = −mG/(2Γ2), while for E ≥ 0 is unbounded. In
the first case the orbit in the phase plane (pr, r) is a closed curve, and this given the third cycle γr
(see Fig. 4.1). Conversely, no cycle can be found for E ≥ 0, and the invariant surface in phase space
for the complete problem is actually the product T2 × R. In the latter case the angular variables
can be introduced only for the cycles γφ and γθ.

The following step is to introduce the actions of the system, using (4.10). Because on the cycle
γφ only φ evolves, dθ and dr are zero, and the sum in (4.10) reduces to the sole term pφdφ; an
analogous situation happens for the cycles γθ and γr. Therefore, the actions become

Iφ = 1
2π

∮
γφ

pφdφ = J

Iθ = 1
2π

∮
γθ

pθdθ = Γ− |J |

Ir = 1
2π

∮
γr
prdr = −Γ + G

√
−m

2

2E .

(4.27)

Using these actions, by inversion of (4.27), we can calculate the Hamiltonian as

H = − m2G2

2(|Iφ|+ Iθ + Ir)2 . (4.28)

It is immediately seen that the Hamiltonian actually depends on the sum of the action variables.
This implies that the three frequencies of the system actually coincides, which justifies the fact that
in the Keplerian description of the planetary motion only one frequency does actually appear.

A better set of action variables is constructed by introducing the variables of Delaunay L,G,H
defined by the linear transformation (see Lemma 4.1)

L = |Iφ|+ Iθ + Ir,

G = |Iφ|+ Iθ,

H = |Iφ|.
(4.29)

It is immediate to notice that G andH coincide with Γ and J , respectively. Since the transformation
is performed via a unimodular matrix, the corresponding transformation on the angles preserves
the periods. The Hamiltonian in Delaunay’s variables takes the form

H = −m
2G2

2L2 . (4.30)
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The canonical transformation should now be completed by constructing the angle variables l, g and
h associated respectively to the actions L,G and H. To do this, we first define the generating
function

S =
∫

(prdr + pθdθ + pφdφ), (4.31)

where the expression of pr(L,G,H), pφ(L,G,H) and pθ(L,G,H) are obtained by inverting (4.29)
and using the relations (4.26) and (4.27). The conjugate angle will be then:

l = ∂S

∂L
, g = ∂S

∂G
, h = ∂S

∂H
. (4.32)

Using the Delaunay variables L,G,H, l, g, h, the Hamiltonian’s equations become

l̇ = m2G2

L3 , ġ = ḣ = Ġ = L̇ = Ḣ = 0, (4.33)

and the motion is periodic with a single frequency

ω(L) = m2G2

L3 . (4.34)

It also may be useful to recall the relationship between the Delaunay variables and the orbital
elements

L =
√
mGa, l = M,

G = L
√

1− e2, g = ω, (4.35)
H = G cos i, h = Ω.

To avoid the problem that the angles l, g, h are not well defined when the inclination and/or the
eccentricity are zero, the following modified Delaunay variables are also often used:

Λ = L, λ = l + g + h,

P = L−G, p = −g − h, (4.36)
Q = G−H, q = −h.

These variables have the advantage that λ is always well defined, while p and q are not defined only
when the conjugate actions P and Q are respectively equal to zero. The relationship between the
modified Delaunay variables and the orbital elements is given by

Λ =
√
mGa, λ = M +$,

P = L(1−
√

1− e2), p = −$, (4.37)

Q = 2L
√

1− e2 sin2 i, q = −Ω.

Note that, for small eccentricities and inclinations, P is proportional to e2 and Q to i2.
In some cases, the singularities P = 0 and Q = 0 become uncomfortable. To eliminate them,

we introduce Poincaré variables defined as

Λ =
√
mGa, λ = M +$,

η1 =
√

2P cos p, ξ1 =
√

2P sin p, (4.38)
η2 =

√
2Q cos q ξ2 =

√
2Q sin q.
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It’s simple to prove the following equalities

η1 =
√

2Λ
√

1−
√

1− e2 cos$, ξ1 = −
√

2Λ
√

1−
√

1− e2 sin$,

η2 =
√

2Λ
√√

1− e2(1− cos i) cos Ω, ξ2 = −
√

2Λ
√√

1− e2(1− cos i) sin Ω. (4.39)

4.3 Quasi-integrable Hamiltonian
A Hamiltonian system is said to be quasi-integrable if, using a suitable set of canonical action-angle
variables, its Hamiltonian function can be written as

H(p,q) = H0(p) + εHε(p,q, ε), (4.40)

where
εHε(p,q, ε) = εH1(p,q) + ε2H2(p,q) + ε3H3(p,q) + ... (4.41)

and where p = (p1, ..., pn) ∈ G ⊂ Rn are action variables, q = (q1, ..., qn) ∈ Tn are angle variables,
ε is a small parameter and gradpH0, H1, H2, ... are intended to be order unity. The Hamiltonian
is assumed to be an analytic function of all its arguments; in particular, we shall assume that it
can be expanded in power series of ε in a neighborhood of the origin.

The smallness of the parameter ε means that the system is a small perturbation of an integrable
one. In particular, it is natural to regard H0 as the integrable approximation, and εH1 + ε2H2 + ...
as its perturbation. The Hamilton’s equations corresponding to (4.40) are:

ṗj = −ε∂Hε(p,q, ε)
∂qj

q̇j = ωj(p) + ε
∂Hε(p,q, ε)

∂pj

(4.42)

for j = 1, ..., n, where ωj(p) = ∂H0(p)
∂pj

. The question is raised whether the dynamics remain similar
to that of the unperturbed system.

4.3.1 Lindstedt method

For simplicity, suppose we have to study a nearly integrable system of the form

ẋ = g(x) + εf(x) (4.43)

where x ∈ R, ε is a small parameter (i.e. ε � 1) and g : R → R and f : R → R are two analytic
functions. A very elementary idea to solve (4.43) is to look for a solution of the form

x(t) = x0(t) + εx1(t) + ε2x2(t) + ... (4.44)

where x0(t), x1(t), x2(t), ... are functions to be determined. Replacing (4.44) in (4.43) and using the
fact that f and g are an analytic functions, i.e. f and g can be expanded in Taylor series in ε

g(x0+εx1+ε2x2+...) =
∞∑
n=0

εngn(x0, ..., xn), f(x0+εx1+ε2x2+...) =
∞∑
n=0

εnfn(x0, ..., xn), (4.45)
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we obtain immediately, for comparison of the coefficients of the development in ε, the system of
equations

ẋ0 = g0(x0)
ẋ1 = g1(x0, x1) + f0(x0)
...

ẋs = gs(x0, ..., xs) + fs−1(x0, ..., xs−1)
...

(4.46)

where fs−1(x0, ..., xs−1) is completely determined by the previous steps. We can note the recursive
nature of this system of equations.

In a similar way, we can look for the system (4.42) a solution of the form

q(t) = q0(t) + εq1(t) + ε2q2(t) + ...

p(t) = p0(t) + εp1(t) + ε2p2(t) + ...
(4.47)

with of course (in the Hamiltonian case) p0(t) = p(0) and q0(t) = q(0) + ω(p(0))t. Indeed,
inserting such expressions into the equations of motion (4.42) and using the fact that H(q,p) is an
analytic function, we obtain immediately, for comparison of the coefficients of the development in
ε, a infinite system of equations which we may attempt to solve recursively.

Such a procedure is called a Lindstedt method and series (4.47) are called Lindstedt series.
Though conceptually simple, however, the method is not simple to use in practice (at least not
to obtain mathematically rigorous results) due to the huge amount of terms which are rapidly
generated by raising the order. Another important problem concerns the convergence of the series
(4.47).

An example of application of the Lindstedt method consists in looking for first integrals for
the Hamiltonian (4.40) in order to use the theorem of Arnold-Jost. The idea is to look for a first
integral Φ such that {H,Φ} = 0 which are in some sense continuations of first integrals of the
unperturbed systems, namely in the form

Φ(p,q, ε) = Φ0(p,q) + εΦ1(p,q) + ε2Φ2(p,q) + ... (4.48)

where Φ0 is a first integral of H0, i.e. {H0,Φ0} = 0, and Φ0,Φ1, ... are analytic functions of their
argument. To solve the equation {H,Φ} = 0, we replace the expression in powers of ε for both the
Hamiltonian and the function Φ. Then, collecting together all coefficients of the same power of ε,
we get the infinite system of equations of the form

{H0,Φs} = −
s∑
i=1
{Hi,Φs−i} (4.49)

where the r.h.s. is a known function, because it depends only on H and on Φ0, ...,Φs−1 which are
either know or determined by the equations of preceding steps. Hence we may attempt a recursive
solution of the system.
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4.4 The averaging principle
We will ignore for a while that the system is Hamiltonian and we consider an arbitrary system of
m× n differential equations

ϕ̇ = ω(I) + εf(I,ϕ)
İ = εg(I,ϕ)

(4.50)

where ϕ ∈ Tm, I ∈ G ⊂ Rn and

f(I,ϕ+ 2π) ≡ f(I,ϕ), g(I,ϕ+ 2π) ≡ g(I,ϕ). (4.51)

The averaging principle for system (4.50) consists of its replacement by another system, called
the averaged system:

J̇ = εḡ(J) (4.52)

in the n dimensional region G ⊂ Rn, where

ḡ(J) = 1
(2π)m

∫ 2π

0
...

∫ 2π

0
g(J,ϕ)dϕ1...dϕm. (4.53)

We claim that the system (4.52) is a “good approximation” to the system (4.46).
This approach has been critically considered by Arnold, quoting his book (i.e. Arnold (1989),

Chapter 10) “this principle is neither a theorem, an axiom, nor a definition, but rather a physical
proposition, i.e. a vaguely formulated and, strictly speaking, untrue assertions. Such assertions
are often fruitful sources of mathematical theorems.”. Indeed, a satisfactory description of the
connection between the solutions of the system (4.50) and the system (4.52) in the general case has
not yet been found.

In replacing system (4.50) by system (4.52) we discard the term εg̃(I,ϕ) = εg(I,ϕ)− εḡ(I) on
the right-hand side. This term has order ε as does the remaining term εḡ(I). The average principle
is based on the assertion that in the general case the motion of system (4.50) can be divided into
the “evolution” (4.52), which is represented by the term εḡ, and into the small oscillations, which
is represented by the term εg̃ (see Fig. 4.2). In this general form, this assertions is invalid and the
principle itself is untrue.

In effects, it is not difficult to find systems, Hamiltonian or general, for which the averaging
principle is satisfied, as well as system for which it is not.

If we apply the principle to the Hamiltonian system (4.40), we find that the average of the
perturbation vanishes due to the periodicity of the Hamiltonian:

ḡ = 1
(2π)n

∫ 2π

0
...

∫ 2π

0

∂Hε(p,q, ε)
∂q dq1...dqn = Hε(p,2π, ε)−Hε(p,0, ε)

(2π)n = 0. (4.54)

In other words, there is no evolution in an averaged Hamiltonian system, i.e. p(t) = p0 for any t.
It can be proven a theorem justifying this principle in the very particular case m = 1 (see

Arnold (1989) for details).
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Figure 4.2: Illustrating the averaging principle, in the general case (left) and in the Hamiltonian
case (right). Reprinted from Fig. 10 of Benettin, The elements of Hamiltonian perturbation theory.

4.5 Introduction to perturbation theory
The power of the Hamiltonian formalism is that, instead of looking for approximations of the real
dynamics by working on the equations of motion - which would be very cumbersome - one can work
directly on the Hamiltonian function. Then, an alternative idea to study nearly integrable system
is to produce small canonical transformations, i.e. transformations near to the identity, which move
the perturbation to higher order in ε (see Morbidelli (2011) and Benettin for more details).

For the following, we only study the case of isochronous Hamiltonian, i.e. of the form

H(p,q) = ω · p + εHε(p,q, ε), (4.55)

where ω ∈ Rn \ 0 are fixed and where Hε(p,q, ε) is defined in (4.41). An example of isochronous
systems is a system of weakly coupled harmonic oscillators.

Moreover, we assume that there does not exist an integer vector k∗ 6= 0 such that the quantity
k∗ · ω vanishes, i.e.

k∗ · ω 6= 0, ∀k∗ ∈ Zn \ 0. (4.56)
The general strategy of every perturbation approach for these Hamiltonian systems is to look

for a canonical transformation close to the identity of the form

p = p1 + εf1(p1,q1), q = q1 + εg1(p1,q1), (4.57)

such that, by substituting (4.57) in (4.55), the latter becomes

H(p1(ε),q1(ε)) ≡ H1(p1,q1) = ω · p1 + εH̄1(p1) + ε2H2(p1,q1) + ... (4.58)

with some new functions H̄1, H2, ... of order unity, where H̄1 is the average of H1 over the angles
q, i.e.

H̄1(p) = 1
(2π)n

∫ 2π

0
...

∫ 2π

0
H1(p,q)dq1...dqn. (4.59)

If this operation is successful, then H0 + εH̄1 is the integrable approximation of order ε2 of the
real dynamics. In principle, this procedure can be iterated, looking for a sequence of canonical
transformations close to the identity:

pr−1 = pr + εrfr(pr,qr), qr−1 = qr + εrgr(pr,qr), (4.60)
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which move the perturbation to higher orders in ε, i.e. such that the Hamiltonian in the action-angle
variables pr,qr becomes

Hr(pr,qr) = ω · pr + εH̄1(pr) + ...+ εrH̄r(pr) + εr+1Hr+1(pr,qr) + ..., (4.61)

thus obtaining a sequence of increasingly better approximations of the real dynamics. One could
hope to use this procedure indefinitely, thus transforming the original H(p,q) into the integrable
H∞(p∞). However, we know from the work of Poincaré that in general the procedure cannot be
successful up to infinite order. On the other hand, chosen r ≥ 1 in a way that we consider suitable
(e.g. in a way depending on ε and on the properties of the system), one can stop the procedure
at order r, obtaining, less than errors of order O(εr+1), an integrable approximation of the real
dynamics, which is pr = pr(0) and qr = ωrt+qr(0), with ωr = gradpr [ω ·pr + ...+εrH̄r(pr)]. The
motion in the original variables p,q can be obtained by composing all the sequence of canonical
transformations: in particular, because we have done canonical transformations close to the identity,
p(t),q(t) have oscillations of size ε around the values pr,qr(t).

4.5.1 Lie series approach

In the procedure sketched in the previous section, a big problem is to select, among all possible
transformations (p,q)→ (p1,q1) that transform (4.55) to (4.58), the one that is canonical.

To look for a canonical transformation ε-near the identity (for ε small), we use a method based
on the Lie series. On a 2n-dimensional phase space endowed with canonical coordinates (p,q), we
consider an analytic function χ(p,q), that will be called a generating function. We define the Lie
derivative as the time derivative along the Hamiltonian vector field generated by χ, i.e.

Lχ· = {·, χ}. (4.62)

We also define the Lie series operator as the exponential of Lχ, namely

exp(εLχ) =
∞∑
i=0

εi

i!L
i
χ, (4.63)

which represents the time one evolution of the canonical flow generated by the autonomous Hamil-
tonian χ.

Using the Lie series, the near identity canonical transformation (p,q)→ (p1,q1) is defined as

p = exp(εLχ)p1 = p1 + ε
∂χ

∂q

∣∣∣∣
p1,q1

+ε2

2 Lχ
∂χ

∂q

∣∣∣∣
p1,q1

+...

q = exp(εLχ)q1 = q1 + ε
∂χ

∂p

∣∣∣∣
p1,q1

+ε2

2 Lχ
∂χ

∂p

∣∣∣∣
p1,q1

+...
(4.64)

where we consider χ(p1,q1) as a function of the new variables (p1,q1). This is a near the identity
canonical transformation in the sense that it depends analytically on ε as a parameter, and for
ε = 0 is the identity. It is also an easy matter to write the inverse transformation: it is enough to
replace χ by −χ or, equivalently, ε by −ε.

Having defined a coordinate transformation we may ask how a function is transformed. In par-
ticular, having given a function f(q,p) we should calculate the transformed function f1(p1,q1) by
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substitution of the transformation (4.64). In perturbation theory we also need to expand the trans-
formed function in powers of the parameter ε, which is clearly a long and cumbersome procedure
since we should apply the Taylor’s formula. A remarkable property is the following.

Lemma 3 (The exchange theorem). Let a generating function χ(p,q) and a function f(q,p) be
given. Then the following equality holds true:

f(p,q)
∣∣∣∣
[p=exp(εLχ)p1,q=exp(εLχ)q1]

= [exp(εLχ)f(p,q)]
∣∣∣∣
p=p1,q=q1

. (4.65)

The claim is that the series expansion in ε of the transformed function may be calculated by
applying the exponential operator of the Lie series directly to the function, with no need of making
a substitution of variables.

An elegant and effective representation of the operation of transforming a function is found
as follows. Assume, as is typical in perturbation theory, that the function to be transformed is
expanded in power series of the parameter ε, namely f(p,q, ε) = f0(p,q)+εf1(p,q)+ε2f2(p,q)+...
and that we want to write the transformed function g = exp(εLχ)f as a power series g0 + εg1 +
ε2g2 + ... in ε. Working at a formal level we may use the linearity of the Lie series operator, thus
writing

g = exp(εLχ)f0 + ε exp(εLχ)f1 + ε2 exp(εLχ)f2 + ... (4.66)

That is, we apply the Lie series to every term of the expansion of f . The action of the operator is
represented by the triangular diagram

g0 f0y
g1 Lχf0 f1y y
g2

1
2!L

2
χf0 Lχf1 f2y y y

g2
1
3!L

3
χf0

1
2!L

2
χf1 Lχf2 f3y y y y

...
...

...
...

... . . .

(4.67)

where terms of the same order in ε are aligned on the same line. The calculation may be performed
by columns: if the function f and the generating function χ are known, then every column may
be calculated proceeding up-down until the line corresponding to the wanted order in ε is reached.
Then it is enough to add together all terms appearing on the same line, and this gives every term
of the expansion of g up to the wanted order. A compact form of the diagram is given by the
recursive formula

g0 = f0, gr =
r∑
j=0

1
j!L

j
χfr−j for r > 0. (4.68)
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Composition of Lie Series

As we have seen, the Lie Series defines a near the identity transformation, which is also canonical.
Anyhow, more general transformations can be constructed by composition of Lie Series.

Let us consider the sequence of generating function χ = {χ1, χ2, χ3, ...}, and let the sequence
of operators S(1), S(2), S(3), ... be defined as

S(1) = exp(εLχ1), S(k) = exp(εkLχk)S(k−1) for k ≥ 1. (4.69)

We can also defined the operator

Sχ = ... ◦ exp(ε3Lχ3) ◦ exp(ε2Lχ2) ◦ exp(εLχ1). (4.70)

Working at a formal level, we assume that every operator is well defined and that the sequence
tends to some limit.

Inverting the operator so defined is not difficult. Let us define the sequence S̃(1), S̃(2), ..., S̃(r) as

S̃(1) = exp(−εLχ1), S̃(k) = S̃(k−1) exp(−εkLχk) for k ≥ 1. (4.71)

and let us assume again that the sequence tends to some limit. It is simple to prove that

S̃(k) ◦ S(k) = Id (4.72)

and that the inverse of the operator Sχ is

S(−1)
χ = exp(−εLχ1) ◦ exp(−ε2Lχ2) ◦ exp(−ε3Lχ3) ◦ ... (4.73)

Lemma 4. Consider a near the identity canonical transformation in the form

q = q′ + εϕϕϕ1(p′,q′) + ε2ϕϕϕ2(p′,q′) + ..., p = p′ + εψψψ1(p′,q′) + ε2ψψψ2(p′,q′) + ... (4.74)

Then there exists a sequence χ1(p′,q′), χ2(p′,q′), ... of generating functions such that

q = Sχq′, p = Sχp′. (4.75)

4.6 Birkhoff normal form
The problem is now reduced to finding a suitable generating Hamiltonian χ such that, if H has the
form (4.55), H1 has the form (4.58).

As we have seen, using Lemma 4.3 to write the Hamiltonian in the new variables, one gets

H1(p1,q1) = [exp(εLχ)H(p,q)]
∣∣∣∣
p=p1,q=q1

. (4.76)

If we write (4.76) in an explicit form of order ε2, we obtain

H1(p1,q1) =ω · p1 + εH1(p1,q1) + ε{ω · p1, χ(p1,q1)}+ ε2H2(p1,q1)+

+ ε2{H1(p1,q1), χ(p1,q1)}+ ε2

2 {{ω · p
1, χ(p1,q1)}, χ(p1,q1)}+O(ε3)

(4.77)
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Moreover, we assume that ε is small enough such that, if χ and H are analytic, the series (4.76)
is absolutely convergent. From (4.77), we immediately see that the term of H1 of order zero in ε
is ω · p1; therefore H1 will have the form (4.58) if and only if the first-order term in ε will be a
function of the sole actions p1, namely if and only if the equation

H1(p1,q1) + {ω · p1, χ(p1,q1)} = H̄1(p1), (4.78)

which is also called the homological equation, is satisfied by some functions χ(p1,q1) and H̄1(p1).
To solve (4.78) we can use the fact that the coordinates q1 are angles and that the Hamiltonian H
is periodic in q1. We expand H1 in a Fourier series as

H1(p1,q1) =
∑

k∈Zn
ck(p1) exp(

√
−1k · q1) (4.79)

and then we then look for a solution χ of (4.78) of a similar form

χ(p1,q1) =
∑

k∈Zn
dk(p1) exp(

√
−1k · q1). (4.80)

It is simple to prove that

{ω · p1, χ(p1,q1)} = −
√
−1

∑
k∈Zn

dk(p1)k · ω exp(
√
−1k · q1). (4.81)

With the assumption (4.56), the solution of equation (4.78) is given by a generating function χ
of the form (4.80) with coefficients dk given by

d0 = 0, dk(p1) = −
√
−1ck(p1)

k · ω for k 6= 0 (4.82)

and a function H̄1 that is simply
H̄1(p1) = c0(p1). (4.83)

However, this solution of (4.78) is only a formal solution, because we have to prove that the
generating Hamiltonian χ is well defined as an analytic function, i.e. that its Fourier series (4.80)
with coefficients given by (4.82) is absolutely convergent. Obviously, if we show that the series is
absolutely convergent, then the generating function χ, and so the canonical transformation relating
the original variables p,q to the new ones p1,q1, is determined.

In this case, the terms of the new Hamiltonian H1(p1,q1) can be simply computed using the
complete expression (4.77). In particular H1 has the form

H1(p1,q1) = ω · p1 + εH̄1(p1) +
∞∑
j=2

εjH
(1)
j (p1,q1), (4.84)

where H(1)
j (p1,q1) is given by the recursive formula (4.68) for j ≥ 1. The Hamiltonian in the form

(4.84) is said to be in Birkhoff normal form to first order in ε.
The most elementary situation in which the series (4.80) is absolutely convergent is the case in

which the Hamiltonian H1 is a Fourier polynomial, i.e.

H1(p1,q1) =
∑
k∈N

ck(p1) exp(
√
−1k · q1) (4.85)
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where N ⊂ Zn is a finite subset. In this case, χ is obviously given by

χ(p1,q1) =
∑

k∈N\0
−
√
−1ck(p1)

k · ω
exp(
√
−1k · q1), (4.86)

which is analytic because none of the denominators k ·ω vanish and because the Fourier expansion
contains only a finite number of terms.

4.7 The small divisors problem
If the Hamiltonian H1 has a full Fourier series, it is not sufficient to assume that the divisor is not
zero, because it can assume arbitrarily small values making convergence of the Fourier series (4.80)
doubtful. For this reason, it is necessary that the Fourier coefficients dk decrease sufficiently fast
by increasing (the norm of) of k, i.e. that the denominators k ·ω should never be too close to zero
for large k.

Definition 3. The frequencies ω are said to be (γ, τ)-Diophantine, if there exist real constants
γ > 0 and τ > n− 1 such that

|k · ω| > γ

|k|τ , ∀k ∈ Zn \ 0, (4.87)

with |k| = |k1|+ |k2|+ ...+ |kn|.

For the following we need to introduce a complexification of domains. Consider the common
case of a phase space G × Tn, where G ⊂ Rn, endowed with action-angle variables q ∈ Tn and
p ∈ G . For σ > 0, we define the complexification Tnσ of the n-torus as

Tnσ = {ϕ ∈ Cn | Re(ϕj) ∈ [0, 2π], |Im(ϕj)| < σ}. (4.88)

For any real analytic function F : Tnσ → C, periodic of real period 2π in each argument, we denote
by ‖ F ‖∞,σ the supremum norm of F in the strip, and we define the “Fourier norm” as

‖ F ‖σ=
∑

k∈Zn
|Fk| exp(|k|σ), (4.89)

where Fk is the k-th Fourier coefficient of F .

Lemma 5. If F is analytic in Tnσ and ‖ F ‖∞,σ<∞, then the amplitude of the Fourier components
Fk decrease exponentially with |k|, according to

|Fk| ≤‖ F ‖∞,σ exp(−|k|σ). (4.90)

The complexification Gρ of the real domain G is defined as

Gρ =
⋃

p∈G

∆ρ(p), ∆ρ(p) = {z ∈ Cn | |z− p| < ρ}, (4.91)

where |z| = maxj |zj |. The phase space becomes

Dρ,σ = Gρ × Tnσ. (4.92)
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For any analytic function F : Dρ,σ → C, we extend the definition of the “Fourier norm” in the
following way

‖ F ‖ρ,σ= sup
I∈Gρ

‖ F (I, ·) ‖σ (4.93)

We are now ready to introduce a proposition which states the possibility of performing one
perturbation step for the isochronous system (4.55), in the assumption that the frequencies are
(γ, τ)-Diophantine and that the perturbation Hε is analytic in the above introduced domain Dρ,σ.

Proposition 2. Let H as in (4.55), with (γ, τ)-Diophantine frequency ω. Assume Hε is analytic
in Dρ,σ for some (ρ, σ), and ‖ Hε ‖ρ,σ<∞. Let

E = γρστ+1. (4.94)

For any 0 < η < 1, if

ε < ε0 = cητ+2E

‖ H1 ‖ρ,σ
, (4.95)

where c is a constant depending only on τ , there exists an analytical transformation Sεχ : D(1−η)(ρ,σ) →
D(ρ,σ) such that the new Hamiltonian H1 = SεχH : D(1−η)(ρ,σ) → C has the form

H1(p1,q1) = ω · p1 + εH̄1(p1) +
∞∑
j=2

εjH
(1)
j (p1,q1). (4.96)

Another way to solve the problem of the small divisors takes advantage of the analytic properties
of H1. Using the exponential decay of its coefficients (see Lemma 4.5), the idea is to separate the
Fourier expansion of H1 in two parts, namely H1 = H<K

1 +H≥K1 with

H<K
1 =

∑
k∈Zn\0;|k|<K

ck(p) exp(
√
−1k · q), H≥K1 =

∑
k∈Zn;|k|≥K

ck(p) exp(
√
−1k · q) (4.97)

choosing K large enough that H≥K1 is of order ε with respect to H<K
1 . In this case, the Hamiltonian

becomes
H(p,q) = ω · p + εH<K

1 (p,q) + ε2H̃2(p,q) + ... (4.98)

where
H̃2(p,q) = H2(p,q) + 1

ε
H≥K1 (p,q). (4.99)

For the following, I recall H̃2 as H2 and I remember that H̄<K
1 = H̄1.

Then, in the expression (4.77) only εH<K
1 appears at order ε, and equation (4.78) admits the

solution
χ(p1,q1) =

∑
k∈Zn\0;|k|<K

−
√
−1ck(p1)

k · ω exp(
√
−1k · q1). (4.100)

Now χ is obviously analytic because the Fourier expansion contains only a finite number of terms
and because none of the denominators k · ω vanish.
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4.8 Beyond the first order
After the elimination of the harmonics with coefficients of order ε, we would like to iterate the
procedure, in order to eliminate also the nonresonant harmonics with coefficients of higher order
in ε.

The idea is to proceed recursively and perform any finite number r ≥ 1 of steps, so as to push
the remainder to order εr+1. The input of a typical step is a Hamiltonian Hr−1 in a “Birkhoff
normal form” up to order r − 1:

Hr−1(pr−1,qr−1) = ω · pr−1 +
r−1∑
j=1

εjH̄
(j−1)
j (pr−1) +

∞∑
j=r

εjH
(r−1)
j (pr−1,qr−1), (4.101)

where H̄(0)
1 ≡ H̄1. The output is a new Hamiltonian Hr of exactly the same form, but with r − 1

replaced by r everywhere and r replaced by r + 1.
The step from r− 1 to r can be performed looking for a generating function χr and a canonical

transformation
pr−1 = exp(εrLχr)pr, qr−1 = exp(εrLχr)qr. (4.102)

The new Hamiltonian is immediately found to be

Hr(pr,qr) = [exp(εrLχr)Hr−1(pr−1,qr−1)]
∣∣∣∣
pr−1=pr,qr−1=qr

, (4.103)

that is

Hr(pr,qr) =ω · pr + εH̄1(pr) + ...+ εr−1H̄
(r−2)
r−1 (pr)+

+ εrH(r−1)
r (pr,qr) + εr{ω · pr, χr(pr,qr)}+O(εr+1).

(4.104)

As before, the goal is achieved if χr satisfies the homological equation

H(r−1)
r (pr,qr) + {ω · pr, χr(pr,qr)} = H̄(r−1)

r (pr). (4.105)

It is of crucial importance that the equation to be solved at each step is the same.
Obviously, if H(r−1)

r is a Fourier polynomial, we can always solve the equation (4.105) and χr
is obviously analytic.

If the Hamiltonian H(r−1)
r has a full Fourier series, we have to distinguish the case in which ω

satisfies the Diophantine condition from the case in which it does not satisfy.
If ω satisfies the Diophantine condition, we can solve the equation (4.105) and in particular we

can prove the following iterative proposition:

Proposition 3. Let Hr−1 as in (4.101), with (γ, τ)-Diophantine ω, and assume Hr−1 is analytical
in D(1−(r−1)η)(ρ,σ) with η < 1

2r . If ε is sufficiently small, namely

εr <
cητ+2E

‖ H(r−1)
r ‖ρ,σ

(4.106)

with E as in (4.94), then there exists an analytic canonical transformation Sε
r

χr : D(1−rη)(ρ,σ) →
D(1−(r−1)η)(ρ,σ) such that the new Hamiltonian Hr = Sε

r

χrH
r−1 has the form (4.101) with r in place

of r − 1 and r + 1 in place of r.
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If ω does not satisfy the Diophantine condition, as before we decompose the perturbation
H

(r−1)
r (pr,qr) as

H(r−1)
r (pr,qr) = H<Kr

r (pr,qr) +H≥Krr (pr,qr), (4.107)
where H<Kr

r and H≥Krr are defined as in (4.97), with Kr instead of K. In this procedure, Kr must
be large enough so that all harmonics of order larger than Kr have coefficients smaller than εr. It
can be proven that a good choice for Kr is Kr ≥ rK.

Then, χr is chosen in order to eliminate the part of the perturbation of order εr, i.e. χr is the
solution of the equation

H<Kr
r (pr,qr) + {ω · pr, χr(pr,qr)} = H̄<Kr

r (pr). (4.108)

In this case, there is in general no hope of constructing Hamiltonians Hr in Birkhoff normal
form to order εr with arbitrarily large r, namely to transform the original Hamiltonian into an
integrable H∞(p∞).

4.8.1 Practical calculation

In a practical calculation, we truncate the series to some order εr, for a chosen order r ≥ 1, in such
a way that all equalities written above for infinite series remain valid up to terms of order O(εr+1).
In this case the Hamiltonian is transformed to the form

Hr(pr,qr) = ω · pr + εH̄1(pr) + ...+ εrH̄(r−1)
r (pr) +O(εr+1). (4.109)

This should be considered as the optimal normal form, in the sense that we have chosen the optimal
finite order r ≥ 1 which minimizes the size of the non-normalized remainder.

Thus, if we neglect the remainder, we obtain, less than errors of order O(εr+1), an integrable
approximation of the real dynamics, which is pr = constant and qr = ωrt + qr(0), with ωr =
gradpr [ω · pr + ...+ εrH̄

(r−1)
r (pr)].

In particular, suppose we want to construct the transformed Hamiltonian up to degree r in ε of
the truncated Hamiltonian H = H0 + εH1 + ...+ εrHr. With a little attention we realize that it is
enough to construct every diagram of the form (4.67) until we reach the line corresponding to the
power εr, and in particular we need to know only the generating functions χ1, ..., χr. Moreover, it
is sufficient to include all terms up to order εr.

Similar considerations apply to the inverse transformation. In particular, let us consider the
sequence of generating function {χ1, ..., χr}, and let the operators S(r)

χ and S̃
(r)
χ be defined as in

(4.69) an (4.71). Let us calculate the transformation

q = S(r)
χ q′ = q′ + εϕ1(q′, p′) + ...+ εrϕr(q′, p′),

p = S(r)
χ p′ = p′ + εψ1(q′, p′) + ...+ εrψr(q′, p′),

(4.110)

up to degree r in ε, where the functions ϕ1(q′, p′), ..., ϕr(q′, p′) and ψ1(q′, p′), ..., ψr(q′, p′) may be
explicitly calculated. We may then consider the inverse transformation

q′ = S̃(r)
χ q = q + εϕ̃1(q, p) + ...+ εrϕ̃r(q, p),

p′ = S̃(r)
χ p = p+ εψ̃1(q, p) + ...+ εrψ̃r(q, p),

(4.111)

which could be explicitly calculated. We can notice that, because we work with truncated series at
order r, if we substitute the expressions (4.111) into (4.110) the result is the identity up to a term
of order εr+1. This is the best we can expect in a practical calculation.
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Chapter 5

Development of the Hamiltonian in
Poincaré variables

To integrate the Hamilton’s equations “semi-analytically”, using the various tools provided by
Hamiltonian’s theory and by perturbation theory, we first need to rewrite the classical Hamiltonian
(3.22) and the simplified relativistic one (3.66) in Delaunay variables or in Poicaré variables, in
order to obtain two quasi-integrable Hamiltonians of the form (4.40).

In this chapter, we present a method for the expansion of the classical and relativistic Hamilto-
nian in Poincaré variables, which can be implemented in a straightforward manner on a computer.
To do this, we follow in particular the works of Laskar (1989) and of Duriez (1989).

Because we are interested in the problem of three bodies, we use the conservation of the total
angular momentum to simplify the problem.

Moreover, because we are concerned with the secular variations of the eccentricities, we can
simplify the problem using the averaging principle. Indeed, the averaging makes it possible to
reduce the number of degrees of freedom, because averaged Hamiltonians don’t depend on the fast
angles Mi (for i = 1, 2) and the conjugate momenta to the fast angles become first integrals of the
secular problem, i.e. the semi-major axes ai are constants. In particular, if there are no resonances
between the mean motion frequencies of the planets, the use of the averaging principle is justified
by Poisson’s theorem (see section 6.1). Thus, assuming that no strong mean motion resonances are
present, we can obtain qualitative information on the long-term changes of the eccentricities.

5.1 Hamilton equations in Poincaré variables
The problem is to rewrite the Hamiltonians (3.22) and (3.66) in modified Delaunay’s variables1

Λk = µk

√
G(m0 +mk)ak λk = Mk + ωk + Ωk

Pk = Λk(1−
√

1− e2
k) pk = −ωk − Ωk = −$k (5.1)

Qk = 2Λk
√

1− e2
k sin2 ik qk = −Ωk.

1We have constructed the action-angle variables using the Hamiltonian in the form (4.22) rather than (4.19). Had
we started the construction of action-angle variables from (4.22), the resulting actions would have been multiplied
by µk with respect to those defined in (4.37)-(4.39), and the resulting Hamiltonian would have been multiplied by
µ3
k with respect to (4.28).
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or in Poincaré variables

Λk = µk

√
G(m0 +mk)ak λk = Mk +$k

ηk =
√

2Λk
√

1−
√

1− e2
k cos$k ξk = −

√
2Λk

√
1−

√
1− e2

k sin$k (5.2)

η2k =
√

2Λk
√√

1− e2
k(1− cos ik) cos Ωk ξ2k = −

√
2Λk

√√
1− e2

k(1− cos ik) sin Ωk

for k = 1, 2.
In Poincaré variables, the Hamiltonians (3.22) and (3.66) become

Hnew =
2∑
j=1
−
G2(m0 +mj)2µ3

j

2Λ2
j

+ εH1(Λ,λ,η, ξ)

Hrel =
2∑
j=1
−
G2(m0 +mj)2µ3

j

2Λ2
j

+ εH1(Λ,λ,η, ξ) + 1
c2H2(Λ,λ,η, ξ),

(5.3)

where H1 and H2 can be explicitly written as a function of the Poincaré variables (5.2) by direct
substitution in (3.22) and (3.66). Then, Hamilton’s equations will be:

Λ̇k = −ε∂H1
∂λk

λ̇k =
G2(m0 +mj)2µ3

j

Λ3
j

+ ε
∂H1
∂Λk

η̇k = −ε∂H1
∂ξk

ξ̇k = ε
∂H1
∂ηk

(5.4)

η̇2k = −ε∂H1
∂ξ2k

ξ̇2k = ε
∂H1
∂η2k

,

and in the relativistic case

Λ̇k = −ε∂H1
∂λk

− 1
c2
∂H2
∂λk

λ̇k =
G2(m0 +mj)2µ3

j

2Λ3
j

+ ε
∂H1
∂Λk

+ 1
c2
∂H2
∂Λk

η̇k = −ε∂H1
∂ξk

− 1
c2
∂H2
∂ξk

ξ̇k = ε
∂H1
∂ηk

+ 1
c2
∂H2
∂ηk

(5.5)

η̇2k = −ε∂H1
∂ξ2k

− 1
c2
∂H2
∂ξ2k

ξ̇2k = ε
∂H1
∂η2k

+ 1
c2
∂H2
∂η2k

,

for k = 1, 2.
Obviously, in these Hamiltonians, λk plays the role of the fast angles, because λ̇k = O(1), while

the argument of perihelion and the longitudes of node are slow angles, because Λ̇k, ξ̇k, ξ̇2k, η̇k, η̇2k =
O(ε). Indeed, in the planetary system with a dominant stellar mass, the orbits slowly rotate due
to mutual interactions and to relativistic effects, and the real motion is distinguishable from the
Keplerian one only on observation conducted for times of the order of centuries.

In the following, when we do not want to distinguish the classical case from the relativistic one,
we will refer for simplicity to a Hamiltonian function of the form

H =
2∑
j=1
−
G2(m0 +mj)2µ3

j

2Λ2
j

+Hε(Λ,λ,η, ξ), (5.6)

where Hε depends on the case, i.e. Hε is equal to εH1 in the classical case and it is equal to
εH1 + 1

c2H2 in the relativistic case.
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5.1.1 D’Alembert rules

In the classical studies of the dynamics of planetary problems, the function Hε is usually expanded
in Fourier series of the angles λ, p and q and in power series of P1/2 and Q1/2, or equivalently,
using the Poincaré variables, in Fourier series of λ and in power series of ξ and η. Let us de-
note by Λj , Pj , Qj , λj , pj , qj (j = 1, 2) the modified Delaunay variables of the 2 bodies and by
αj , βj , kj ,mj , sj integer numbers. Moreover, we generically denote by Λ,α,β,k,m and s the vec-
tors whose components are Λj , αj , βj , kjmj and sj respectively. The most general form of the
Fourier series expansion in the angles and power series expansion in P 1/2

j , Q
1/2
j is therefore:

Hε =
∑

α,β∈Z2
+

∑
k,m,s∈Z2

cα,β,k,m,s(Λ)

 2∏
j=1

P
αj/2
j Q

βj/2
j

 exp[
√
−1(λ · k + p ·m + q · s)] (5.7)

where cα,β,k,m,s(Λ) are suitable coefficients and λ · k =
∑
j λjkj .

With obvious notations, in Poincaré variables Hε has the form

Hε =
∑

α,β∈Z4
+

∑
k∈Z2

cα,β,k(Λ)

 4∏
j=1

ξ
αj/2
j η

βj/2
j

 exp[
√
−1(λ · k)] (5.8)

where cα,β,k(Λ) are suitable coefficients.
In reality, these trigonometric series, resulting from the developments, do not contain all possible

combinations of angles: consideration of the symmetries and analytic properties of Hε allow the
easily derivation of the so-called D’Alembert rules. In the case of modified Delaunay variables, they
are:

1. Hε must be invariant under a simultaneous change of sign of all the angles λj , pj , qj ; therefore
the Fourier series expansion must contain only cosine terms, namely cα,β,k,m,s = cα,β,−k,−m,−s
and all coefficients are real;

2. Hε must be invariant under an arbitrary rotation of the reference frame around the z axis.
A rotation of the reference frame by an angle θ increments the longitudes λj , pj , qj by θ.
Because pj = −$j and qj = −Ωj , the invariance of Hε implies that

∑
j(kj −mj − sj) = 0;

3. Hε must be invariant under a simultaneous change of sign of all inclinations, namely by a
transformation Q1/2

j → −Q1/2
j , ∀j. This implies that

∑
j βj/2 must be an integer number;

4. Hε must be analytical function of the variables ξ,η in a neighborhood of ξ = η = 0. This
implies |mj | ≤ αj and |sj | ≤ βj for each j = 1, 2 and, moreover, mj has the same parity of αj
and sj has the same parity of βj , i.e. mj can only take the values −αj ,−αj + 2, ..., αj − 2, αj
and sj can only take the values −βj ,−βj + 2, ..., βj − 2, βj .

In the case of Poincaré variables, they are:

1. the coefficients cα,β,k are complex and they satisfy the condition cα,β,k = c̄α,β,−k; therefore
the Fourier series expansion must contain only sine terms if |β| is odd and only cosine terms
if |β| is even;

2. the sum α3 + α4 + β3 + β4 must be an even number;
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3. the sum k1 + k2 satisfy the condition k1 + k2 ≤ α1 + ...+α4 + β1 + ...+ β4 and the two sums
must have the same parity.

I emphasize again that D’Alembert rules apply both in the classical case that in the relativistic
one, because they are obtained only by considerations of the symmetries and analytic properties of
Hε.

5.2 Conservation of the angular momentum and the reduced three-
body problem

We know that in classical mechanics, for a closed system, in addition to conservation of energy and
total linear momentum, there is the conservation of the total angular momentum. It is simple to
prove that also in general relativity the total angular momentum is conserved: this is a consequence
of the fact that, because of the isotropy of the space, the Lagrangian of a closed system does not
change under the rotation of the system as a whole.

Let C the angular momentum of a system of three bodies in the heliocentric reference system
(see (3.18) - we remember that p0 = 0):

C = [Cx, Cy, Cz] = C1 + C2 = r1 × p1 + r2 × p2. (5.9)

Using the Delaunay variables

Lk = µk

√
G(m0 +mk)ak lk = Mk

Gk = Lk

√
1− e2

k gk = ωk (5.10)
Hk = Gk cos ik hk = Ωk,

for k = 1, 2, it is simple to prove that the angular momentum is equal to2

Cx =
2∑
j=1

√
G2
j −H2

j sin hj , Cy = −
2∑
j=1

√
G2
j −H2

j coshj , Cz =
2∑
j=1
Hj . (5.11)

In the case of a system of three bodies and in the heliocentric reference system, the conservation
of the angular momentum induces two basic properties (see Laskar (1989) and Laskar and Roboutel
(1995) for more details).

The first property induced by the conservation of the angular momentum is that the ascending
node of the two planets have a common motion on the invariant plane (plane perpendicular to
the angular momentum vector and includes the central star). Indeed, let C the total angular
momentum in the heliocentric reference system (i.e. C = r1 × p1 + r2 × p2) and let V the vector
directed toward the intersection of the orbits of the two bodies, as shown in Fig. 5.1. Because V
lies both in the plane (r1,p1) and in the plane (r2,p2), we have that the vector V is perpendicular
to the angular momentum C:

V ·C = V · (r1 × p1) + V · (r2 × p2) = 0. (5.12)
2Remember that Gj =‖ Cj ‖ and that the orbital plane of the j-th body is perpendicular to Cj , for j = 1, 2.
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Figure 5.1: Invariant plane. Reprinted from Fig. 2 of Laskar, Systèmes de variables et éléments.

Because C is constant, then V(t) always remains in the plane perpendicular to C. Thus, by
definition of V, this implies that the intersection of the two orbits remains always on the same
plane perpendicular to the angular momentum C. If we choose this plane as the reference plane,
we have that the two points of intersection of the orbits coincide with the ascending node of the
two planets, and then the thesis.

The second point is that the Hamiltonian depends on the longitudes of the nodes uniquely by
their difference (in fact it is invariant under an arbitrary rotation of the reference frame around the
z axis), i.e. H = H0(Λ) +Hε(Λ,λ,G,g,H, h2 − h1). Then, if the osculating elements are defined
with respect to the invariant plane, the difference of the longitude of the node is always equal to
the constant π (i.e. |h1 − h2| = π), and the nodes vanish from the Hamiltonian.

The components of the angular momentum in the plane perpendicular to the vector V are given
by

G1 cos i1 +G2 cos i2 = C

G1 sin i1 +G2 sin i2 = 0,
(5.13)

where C =‖ C ‖ is constant. The equations (5.13) can be rewritten as

H1 +H2 = C

G2
1 −H2

1 = G2
2 −H2

2
(5.14)
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from which we can derive the following relationship

H1 = C

2 + G2
1

2C −
G2

2
2C

H2 = C

2 −
G2

1
2C + G2

2
2C .

(5.15)

We now consider the following change of coordinates

H1 → Ψ1 = H1 +H2, h1 → ψ1 = h1 + h2
2 ,

H2 → Ψ2 = H2 −H1, h1 → ψ2 = h2 − h1
2 ,

(5.16)

which is a canonical transformation. Without loss of generality, we can put h2 = h1 + π and we
obtain

Ψ1 = C, ψ1 = h1 + π

2 , ψ2 = π

2 (5.17)

where Ψ1 and ψ2 are two constants of motion. The equations of motion become

Ψ1(t) = C,
dψ1(t)

dt = ∂H(L,λ,G,g,Ψ1, ψ2)
∂Ψ1

, (5.18)

dΨ2(t)
dt = −∂H(L,λ,G,g,Ψ1, ψ2)

∂ψ2
, ψ2(t) = π

2 .

Thus H depends only on the variables L1, L2, l1, l2, G1, G2, g1, g2, because ψ2 and Ψ2 are constant
and H is independent of ψ1 and Ψ2 (indeed ψ̇2 = ∂H

∂Ψ2
= 0). In this way, we have reduced of 2 the

number of degrees of freedom of the system and we obtain an Hamiltonian system which possesses
4 degrees of freedom.

Thus, we can introduce the modified planar Delaunay’s variables

Λk = Lk λ?k = Mk + ωk = lk + gk (5.19)
Pk = Lk −Gk p?k = −ωk = −gk = −$?

k,

where the orbital elements (Mj , ωj ,Ωj) are obviously defined with respect to the invariant plane
and not to an arbitrary reference frame.

We can also introduce the planar Poincaré variables

Λk = µk

√
G(m0 +mk)ak, λ?k = Mk + ωk = lk +$?

k

ξ?k =
√

2Pk cos p?k =
√

2Λk
√

1−
√

1− e2
k cosωk

η?k =
√

2Pk sin p?k = −
√

2Λk
√

1−
√

1− e2
k sinωk.

(5.20)

The equations of motion become in the classical case:

Λ̇k = −ε∂H1
∂λ?k

λ̇?k = G
2(m0 +mk)2µ3

k

Λ3
k

+ ε
∂H1
∂Λk

η̇?k = −ε∂H1
∂ξ?k

ξ̇?k = ε
∂H1
∂η?k

, (5.21)

85



and in the relativistic case:

Λ̇k = −ε∂H1
∂λ?k

− 1
c2
∂H2
∂λ?k

λ̇?k = G
2(m0 +mk)2µ3

k

Λ3
k

+ ε
∂H1
∂Λk

+ 1
c2
∂H2
∂Λ?k

η̇?k = −ε∂H1
∂ξ?k

− 1
c2
∂H2
∂ξ?k

ξ̇?k = ε
∂H1
∂η?k

+ 1
c2
∂H2
∂η?k

, (5.22)

for k = 1, 2, where H = H(Λ,λ?,η?, ξ?;C).
For the following, it is also useful to introduce a complex form of the planar Poincaré variables.

Given two canonical variables (a, b), to obtain a complex form we can use the following canonical
transformation

(a, b)→
(

1√
2

(a−
√
−1b),−

√
−1√
2

(a+
√
−1b)

)
. (5.23)

Using (5.23) in the case of planar Poincaré variables, we obtain the complex variables (χk,−
√
−1χ̄k)

defined as
χk = 1√

2
(ηk −

√
−1ξk) =

√
Λk
√

1−
√

1− e2 exp(
√
−1$?

k). (5.24)

Finally, if the two inclinations are zero (i.e. i1 = i2 = 0), then the orbital plane coincides with
the plane (x, y) and the planar Poincaré variables (5.20) coincide with the Poincaré variables (5.2),
i.e.

λ?k = λk, $?
k = $k, ξ?k = ξk, η?k = ηk. (5.25)

5.3 Development of the classical Hamiltonian in the reduced prob-
lem

We will present now a method for the computation of the expansion of the Hamiltonian in the
planar Poincaré variables (see Laskar (1989) and Duriez (1989) for more details). In particular, in
the classical case, we are interested in developing the two terms

m1m2
‖ r1 − r2 ‖

,
p1 · p2
m0

. (5.26)

To do this, we use the osculating orbits introduced in chapter 3. I only remember that the
osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit
(i.e. the ellipse in heliocentric coordinate) that it would have about its central body if perturbations
were not present, i.e. the orbit that coincides with the current orbital state vectors (position and
velocity).

5.3.1 Development of the Keplerian movement

We consider a planet P whose movement around the center O is described by a Keplerian ellipse.
We denote by r the distance between P and O. The aim of this section is to develop r, ν and
rn exp(

√
−1mν) as functions of M .
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Development of r and ν

In the two-body problem, the elliptical motion appears to be periodic with period 2π respect to
the angle M (the mean anomaly): this allows us to develop the distance r and the true anomaly ν
in Fourier series of M .

I remember that the relationship between r and the eccentric anomaly E is

a

r
= 1

1− e cosE . (5.27)

The function on the right is periodic in M of period 2π (E and M are angles) and it is an even
and smooth function. Thus it can be expanded in its Fourier series

1
1− e cosE = a0

2 +
∞∑
k=1

ak cos(kM), (5.28)

where
ak = 1

π

∫ 2π

0

cos(kl)
1− e cosE dl, ∀k ≥ 0. (5.29)

With a simple change of variable, we obtain

ak = 1
π

∫ 2π

0
cos[k(E − e sinE)]dE = 2Jk(ke), ∀k ≥ 0, (5.30)

where Jk(x) is the Bessel function of order k (see (1.28)). Thus, the Fourier series of a/r is given
by

a

r
= 1 +

∑
k>0

Jk(ke) cos(kM). (5.31)

It can been proven that this series converges uniformly for e < 0.66274341... (Tisserand, 1888 ).
In a similar way, we can derive the following developments (for more details see Brouwer and

Clemence, 1961 )

r

a
= 1 + e2

2 − 2e
∞∑
k=1

1
k2

dJk(ke)
de cos(kM)

cos ν = −e+ 2(1− e2)
2

∞∑
k=1

Jk(ke) cos(kM)

sin ν = 2
√

1− e2
∞∑
k=1

1
k

dJk(ke)
de sin(kM).

(5.32)

If we introduce the variables

X = e exp(
√
−1M), X̄ = e exp(−

√
−1M), (5.33)

it is simple to prove that

a

r
= 1 +R, R =

∑
k>0
h≥0

Ck,h(Xk + X̄k)(XX̄)h and Ch,k = (−1)h(k/2)k+2h

h!(h+ k)! . (5.34)
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If the eccentricity is small enough, we can truncate the developments at a not too high degree d:

a

r
= 1 +R, R =

d∑
k=1

b(d−k)/2c∑
h=0

Ck,h(Xk + X̄k)(XX̄)h + o(ed+1), (5.35)

where bxc indicates the integer part of x.
Starting from the expression3 (5.32), to get r/a to the same form of (5.35), we have to introduce

appropriate coefficients C ′k,h such that

r

a
=

d∑
k=0

b(d−k)/2c∑
h=0

C ′k,h(Xk + X̄k)(XX̄)h + o(ed+1). (5.36)

To express the true anomaly ν, we start from the following expression

dν
dM = a2

r2

√
1− e2 (5.37)

which can be rewritten as

dν
dM = (1 + 2R+R2)(1− 1

2XX̄ −
1
8X

2X̄2 + ...). (5.38)

Introducing appropriate coefficients C”k,h, we obtain

dν
dM = 1 +

d∑
k=1

b(d−k)/2c∑
h=0

C”k,h(Xk + X̄k)(XX̄)h + o(ed+1), (5.39)

which gives:
√
−1(ν −M) =

d∑
k=1

b(d−k)/2c∑
h=0

1
k
C”k,h(Xk − X̄k)(XX̄)h + o(ed+1). (5.40)

Development of rn exp(
√
−1m(ν −M))

Let
θ = exp(

√
−1(ν −M)). (5.41)

To obtain the development of θ in X and X̄, it is sufficient to combine the development (5.40) with
the development of the exponential function in Taylor series.

We can then write the development of
(
r
a

)n
θm as

(
r

a

)n
θm =

+∞∑
k=−∞

Xn,m
k (e) exp(

√
−1(k −m)M), (5.42)

3We can deduce r/a in a different way. Starting from the expression (5.34), r/a is equal to

r

a
= 1

1 +R
=

d∑
j=0

(−1)jRj + o(ed+1)
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where Xn,m
k (e) are the Hansen coefficients (these coefficients are defined in Appendix B).

Introducing appropriate coefficients Cn,m
k,k̄

, we can write
(
r
a

)n
θm in the form

(
r

a

)n
θm =

d∑
k=−d

Xk
b(d−|k|)/2c∑

h=0
Cn,m
k,k̄

(XX̄)h + o(ed+1) =

=
∑

0≤k+k̄≤d

Cn,m
k,k̄

XkX̄ k̄ + o(ed+1),
(5.43)

where Xk ≡ X̄ |k| if k < 0.
From the development (5.43), it is easy to pass to Poincaré coordinates. To do this, we introduce

the variables
z = e exp(

√
−1$?), z̄ = e exp(−

√
−1$?). (5.44)

Using M = λ? −$?, we obtain

X = e exp(
√
−1M) = e exp(

√
−1(λ? −$?)) = z̄ exp(

√
−1λ?) (5.45)

and (
r

a

)n
θm =

∑
0≤k+k̄≤d

Cn,m
k,k̄

z̄kzk̄ exp(
√
−1λ?(k − k̄)) + o(ed+1). (5.46)

Finally, using the planar complex Poincaré variables (5.24), the relationship between z and χ is

z = χ

√
Λ
2

√
1− χχ̄

2Λ = χ

√
Λ
2

(
1− χχ̄

4Λ −
(χχ̄)2

32Λ2 + ...

)
(5.47)

and replacing the expression (5.47) in (5.46), we obtain the desired development.

5.3.2 Development of the inverse of the distance

We consider two planets P1 and P2 whose movement around the center O is described by the oscu-
lating orbits represented by classical orbital elements (ak, ek, ik,Mk, ωk,Ωk) in a reference system
RO = (O; iO, jO,kO). We denote by r1 = r1u1 and r2 = r2u2 the rays vector joining O respectively
with P1 and P2, where obviously r1 =‖ r1 ‖ and r2 =‖ r2 ‖, and S is the angle between the vectors
r1 and r2, as Fig. 5.2 shows.

Then we have
1
∆ = 1

‖ r1 − r2 ‖
= (r2

1 + r2
2 − 2r1r2 cosS)−1/2. (5.48)

Without loss of generality, if we suppose that r1 < r2, we can introduce the quantities ρ and α less
than 1:

ρ = r1
r2
, α = a1

a2
, (5.49)

and we obtain
1
∆ = 1

r2
(1 + ρ2 − 2ρ cosS)−1/2. (5.50)
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Figure 5.2: Reprinted from Fig.1 of Duriez, Le Développment de la Fonction Perturbatrice.

Development of ρn

Writing ρ as
ρ = α

r1
a1

a2
r2

(5.51)

and using (5.43), the development of ρn in the 4 variables X1, X̄1, X2 and X̄2 is

ρn = αn
∑

0≤k+k̄+k′+k̄′≤d

Cn,0
k,k̄
C−n,0
k′,k̄′

Xk
1 X̄

k̄
1X

k′
2 X̄

k̄′
2 + o(ed+1). (5.52)

In a similar way, using zk and z̄k instead of Xk and X̄k, we obtain

ρn = αn
∑

0≤k+k̄+k′+k̄′≤d

Cn,0
k,k̄
C−n,0
k′,k̄′

z̄k1z
k̄
1 z̄

k′
2 z

k̄′
2 exp[

√
−1((k − k̄)λ?1 + (k′ − k̄′)λ?2)] + o(ed+1). (5.53)

Finally, replacing the expression (5.47) in (5.53), we obtain the development of ρn in the planar
Poincaré variables.

Development of cosS

As shown in Fig. 5.2, the orbits lie on the two orbital planes On1u1 and On2u2 with respect to
RO (with respect to which the orbital elements are defined). In particular n1 and n2 are directed
towards the two ascending nodes. The angle between n1 and n2 is Ω1−Ω2 and the orthogonal bases
(n1,kO × n1,kO) and (n2,kO × n2,kO) differ from each other by a rotation of an angle Ω1 − Ω2
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respect to the axis kO. Since the angles between n1 and u1 and between n2 and u2 are respectively
ω1 + ν1 and ω2 + ν2, the unit vectors of P1 and P2 with respect to two bases are

u1 =

 cos(ω1 + ν1)
sin(ω1 + ν1) cos i1
sin(ω1 + ν1) sin i1

 , u2 =

 cos(ω2 + ν2)
sin(ω2 + ν2) cos i2
sin(ω2 + ν2) sin i2

 . (5.54)

Taking account of the rotation between the two bases and the fact that in the reduced problem
the two longitudes of nodes Ω1 and Ω2 satisfy the relation Ω2 = Ω1 + π, we obtain4

cosS = cosw?1 cosw?2 + sinw?1 sinw?2 cos J (5.56)

where J = i2 − i1 is the mutual inclination between the two planets and where

w?k = νk + ωk (5.57)

is the true longitude. Note that w?k = νk + λ?k −Mk.
Using the fact that the total angular momentum C is conserved, the calculation of cos J is easy.

In fact, using (5.13), we derive immediately

C2 = G2
1 +G2

2 + 2G1G2 cos J (5.58)

and

cos J = C2 − Λ2
1(1− e2

1)− Λ2
2(1− e2

2)

2Λ1Λ2
√

1− e2
1

√
1− e2

2

=

= 4C2 − (2Λ1 − χ1χ̄1)2 − (2Λ2 − χ2χ̄2)2

2(2Λ1 − χ1χ̄1)(2Λ2 − χ2χ̄2) ,

(5.59)

where we have used (5.24).
Replacing the expression (5.59) in (5.56), we obtain the desired development of cosS.

5.3.3 Reduction to the plane problem

Suppose J = 0. Then the angle S is simply S = w?1 − w?2, i.e. the difference between the true
longitudes.

If we define D2 = 1 + ρ2 − 2ρ cosβ where β = w?1 − w?2, we have
1
∆ = 1

r2
(1 + ρ2 − 2ρ cosβ)−1/2 = 1

a2

a2
r2
D−1. (5.60)

If ρ is fixed, the function D is periodic with period 2π with respect to the variable β. Then it
admits a development in Fourier series of the form

1
D

= 1
2b

(0)
1/2(ρ) +

∞∑
j=1

b
(j)
1/2(ρ) cos(jβ), (5.61)

4In the general case, cosS is equal to:

cosS = u1 · u2 = cos(Ω1 − Ω2)[cos(ω1 + ν1) cos(ω2 + ν2) + sin(ω1 + ν1) sin(ω2 + ν2) cos i1 cos i2]+
+ sin(Ω1 − Ω2)[cos(ω1 + ν1) sin(ω2 + ν2) cos i2 − sin(ω1 + ν1) cos(ω2 + ν2) cos i1]+
+ sin(ω1 + ν1) sin(ω2 + ν2) sin i1 sin i2.

(5.55)
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and, for a positive integer s, we have

D−s = (1 + ρ2 − 2ρ cosβ)−s/2 =
+∞∑
j=−∞

1
2b

(|j|)
s/2 (ρ) exp(

√
−1jβ). (5.62)

The coefficients 1
2b

(j)
s/2 are called “Laplace coefficients” and they are defined for j ≥ 0 as

1
2b

(j)
s/2 = (s/2)j

(1)j
ρjF

(
s

2 ,
s

2 + j, j + 1; ρ2
)
, (5.63)

where F is the hypergeometric function of Gauss defined as

F (a, b, c;x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k! , (5.64)

which converges if c is not a negative integer for all |x| < 1 5. Here, (a)k is the Pochhammer
symbol, which is defined by

(a)0 = 1, (a)k = a(a+ 1)...(a+ k − 1) = (a+ k − 1)(a)k−1. (5.66)

One way to obtain the relationship (5.63) is the following. We write

(1 + ρ2 − 2ρ cosβ)−1/2 = (1− ρ exp(
√
−1β)− ρ exp(−

√
−1β) + ρ2)−1/2 =

= (1− ρ exp(
√
−1β))−1/2(1− ρ exp(−

√
−1β))−1/2;

(5.67)

then we develop the two terms with the formula of the binomial6 and, after we have done the
product of the series, we collect the terms with the common factor exp(

√
−1jβ) and we obtain

(5.63).
However, in general ρ is not constant. On the other hand if the eccentricities are low, ρ remains

in a neighborhood of a fixed value. In particular, writing

ρ2 = α2 + α2
(
ρ2

α2 − 1
)

= α2 + ε (5.69)

and using the Taylor expansion of the hypergeometric function

F (a, b, c;α2 + ε) =
∞∑
m=0

(a)m(b)m
(c)m

εm

m!F (a+m, b+m, c+m;α2), (5.70)

5It can be useful the following property of the hypergeometric function (see Whittaker for more details):

F (a, b, c;x) = (1− x)c−b−aF (c− a, c− b, c;x). (5.65)

6The (generalized) binomial expansion of (1 + x)α is

(1 + x)α = 1 +
∞∑
k=1

α(α− 1)...(α− k + 1)
k! xk, α ∈ R. (5.68)
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we obtain for j ≥ 0
1
2b

(j)
s/2 =

∞∑
m=0

ϕ(j)
s,m(α)

(
ρ2

α2 − 1
)m

. (5.71)

In this case, ϕ(j)
s,m(α) depends only on α:

ϕ(j)
s,m(α) = (s/2)j

(1)j
(s/2)m(s/2 + j)m

(j + 1)m
α2m+j

(1)m
F

(
s

2 +m,
s

2 +m+ j, j +m+ 1;α2
)
. (5.72)

Thus we obtain

D−s =
+∞∑
j=−∞

∞∑
m=0

ϕ(|j|)
s,m (α)

(
ρ2

α2 − 1
)m (

ρ

α

)|j|
exp(
√
−1jβ), (5.73)

which is equal to

D−s =
+∞∑
j=0

∞∑
m=0

2ϕ(j)
s,m(α)

(
ρ2

α2 − 1
)m (

ρ

α

)j
cos(jβ). (5.74)

Using (5.43) and the fact that exp(
√
−1j(w?1 − w?2)) = θj θ̄′j exp(

√
−1j(λ?1 − λ?2)), we obtain

D−s =
+∞∑
j=−∞

∑
M∈N4

0

φ
(s)
M,j(α)Xµ

1 X̄
µ̄
1X

µ′

2 X̄
µ̄′

2 exp(
√
−1j(λ?1 − λ?2)), (5.75)

where M represents the 4-tuple {µ, µ̄, µ′, µ̄′}. If we want to truncate the development to the degree
d in eccentricities, it is sufficient to impose M ∈ N4(d), where N4(d) is the set of positive or null
integers defined as

N4(d) = {(µ, µ̄, µ′, µ̄′) ∈ N4
0 | 0 ≤ µ+ µ̄+ µ′ + µ̄′ ≤ d}. (5.76)

Finally, using the relationship (5.45) between X and z and the relationship (5.47) between z and
the planar complex Poincaré variables, we obtain the development of D−s in the planar Poincaré
variables.

5.3.4 General case

Suppose now that at least one of the two inclinations is different from zero.
Starting from (5.50), we have

1
∆ = 1

r2
(1 + ρ2 − 2ρ cosβ − 2ρ(cosS − cosβ))−1/2 =

= 1
a2

a2
r2
D−1(1− ρUD−2)−1/2,

(5.77)

where
U = 2(cosS − cosβ) = 2 sinw?1 sinw?2(cos J − 1). (5.78)
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As before, using the fact that the total angular momentum C is conserved, we derive immediately

cos J − 1 =
C2 −

(
Λ1
√

1− e2
1 + Λ2

√
1− e2

2

)2

2Λ1Λ2
√

1− e2
1

√
1− e2

2

=

= 4C2 − (2Λ1 − χ1χ̄1 + 2Λ2 − χ2χ̄2)2

2(2Λ1 − χ1χ̄1)(2Λ2 − χ2χ̄2) .

(5.79)

Replacing the expression (5.79) in (5.78), we obtain the development of U in the planar Poincaré
variables.

Then, using the formula of the binomial, we have that the inverse of the distance in the reduced
problem is given by

1
‖ r1 − r2 ‖

= 1
a2

a2
r2

∞∑
k=0

(−1)k (−1/2)k
(1)k

(ρU)kD−2k−1. (5.80)

If we want to truncate the development to the degree d in eccentricities, it is sufficient in (5.80) to
vary k between 0 and bd/2c and to truncate the development of D−2k−1 to the degree (d− 2k) in
the eccentricities.

The transformation to planar Poincaré variables is then straightforward.

5.3.5 Kinetic part

Finally it remains to develop the kinetic part

T1 = p1 · p2
m0

(5.81)

in the reduced problem, where pk = µkṙk and ṙk = [ṙx,k, ṙy,k, ṙz,k].
We assume that the motion of the two bodies is described by the osculating orbits, i.e. we

consider a two-body fictitious problem. If we place ourselves in the plane of the orbit (Xk,Yk), the
movement, expressed in function of the true anomaly νk, is given by

Xk = rk cos νk, Yk = rk sin νk,

Ẋk = − nkak√
1− e2

sin νk, Ẏk = nkak√
1− e2

k

(ek + cos νk), (5.82)

where nk is the mean motion of the corresponding Keplerian orbit and where rk =‖ rk ‖. In the
fixed reference frame, velocities are thus given byṙx,kṙy,k

ṙz,k

 = R1(ik)×R3(ωk)×

ẊkẎk
0

 , (5.83)

where

R1(ik) =

1 0 0
0 cos ik − sin ik
0 sin ik cos ik

 ; R3(ωk)

cosωk − sinωk 0
sinωk cosωk 0

0 0 1

 . (5.84)
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Thus we have

p1 · p2
µ1µ2

= R1(i1)×R3(ω1)×

Ẋ1
Ẏ1
0

 · R1(i2)×R3(ω2)×

Ẋ2
Ẏ2
0

 . (5.85)

If we call X̂kŶk
0

 = R3(ωk)×

ẊkẎk
0

 , (5.86)

it is simple to prove that
T1

m0
µ1µ2

= X̂1X̂2 + Ŷ1Ŷ2 cos J. (5.87)

Then we put

Zk = X̂k +
√
−1Ŷk =

√
−1nkak√
1− e2

k

[
exp(
√
−1w?k) + zk)

]
(5.88)

where zk is defined in (5.45) (zk = ek exp
(√
−1$?

k

)
), and we obtain

T1 = −µ1µ2
2m0

{
Z1Z̄2 + Z̄1Z2 − (Z1 − Z̄1)(Z2 − Z̄2)

(cos J − 1
2

)}
. (5.89)

The transformations to planar Poincaré variables is then straightforward.

5.3.6 Final form of the classical Hamiltonian

After some algebraic computations, the classical Hamiltonian in the planar Poincaré variables is
given by

H(Λ,λ?,η?, ξ?;C) = H0(Λ1,Λ2) + εH1(Λ1,Λ2, λ
?
1, λ

?
2, η

?
1, η

?
2, ξ

?
1 , ξ

?
2 ;C) (5.90)

where C is the magnitude of the total angular momentum, H0 is given in (5.3) and where H1 can
be expanded in Fourier series of the angles λ? and in power series of η? and ξ?, as in (5.8).

5.4 Development of the relativistic Hamiltonian in the reduced
problem

In the relativistic case, in order to transform the simplified relativistic Hamiltonian HRel to the
required form (5.3), we simply have to express the relativistic part H2 of the Hamiltonian with
respect to the planar Poincaré coordinates.

Because we are concerned with the secular variations of orbital elements, we can further simplify
the problem using the averaging principle (see section 4.4) and replacing the relativistic perturbation
H2 with 〈H2〉, which is the average of H2 with respect to the fast angles (the mean longitudes or
the mean anomalies) over the periods. In this way, the averaging makes it possible to reduce the
number of the degrees of freedom, because 〈H2〉 does not depend on the fast angles and so the
evolution of the conjugate momenta to the fast angles become independent by the relativistic part,
i.e. the semi-major axis ai are constant. At the same time, assuming that no strong mean motion
resonances are present and the system is far enough from collisions, we can still obtain qualitative
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information on the long-term changes of the slowly varying orbital elements (i.e., on the slow angles
and their conjugate momenta).

Thus, in the absence of strong mean motion resonances, the fast angles Mi (= li) can be
eliminated in the Hamiltonian H2 by the following averaging formula:

〈H2〉 = 1
(2π)2

∫ 2π

0

∫ 2π

0
H2dM1dM2 (5.91)

and, using the averaging principle, the relativistic Hamiltonian (5.3) becomes

HRel = H0 + εH1 + 1
c2 〈H2〉. (5.92)

Then we should average out each component of the Hamiltonian H2 over the mean anomalies.
Using the fact that Pi = µivi, the mean relativistic Hamiltonian H2 can be written as7:

〈H2〉 =
2∑
i=1

µi

(
−γ1,i〈v4

i 〉 − γ2,i

〈
v2
i

ri

〉
− γ3,i

〈
(ri · vi)2

r3
i

〉
+ γ4,i

〈
1
r2
i

〉)
. (5.93)

where ri =‖ ri ‖ and vi =‖ vi ‖=‖ ṙi ‖, with the accuracy of O(c−2).
To average out the whole relativistic Hamiltonian, we can calculate the integrals using a con-

venient change of variables, written in the general form of:

〈X 〉 = 1
(2π)2

∫ 2π

0

∫ 2π

0
XdM1dM2 = 1

(2π)2

∫ 2π

0

∫ 2π

0
(XJ )dν1dν2 (5.94)

where J is a scaling function defined by

J = J1J2 = dM1
dν1

dM2
dν2

= (1− e1)3/2

(1 + e1 cos ν1)2
(1− e2)3/2

(1 + e2 cos ν2)2 (5.95)

where νi is the true anomaly of the i−th planet.
For the calculation of the integrals, the following relationships are useful

ri = ai(1− e2
i )

1 + ei cos νi
,

vi = niai
(1− ei)1/2

√
1 + e2

i + 2ei cos νi,

ri · vi = nia
2
i

√
1− e2

i

ei sin νi
1 + e cos νi

(5.96)

where ni =
√
G(m0 +mi)a−3/2

i = β
1/2
i a

−3/2
i . The components of the mean relativistic Hamiltonian

7We remember that the quantities βi, µi, γ1,i, γ2,i, γ3,i and γ4,i are defined in (3.65).

96



can be written explicitly as follows8:

〈v4
i 〉 = n4

i a
4
i√

1− e2
i

[
4− 3

√
1− e2

i

]
,

〈
v2
i

ri

〉
= n2

i ai,〈
(ri · vi)2

r3
i

〉
= n2

i ai√
1− e2

i

[
1−

√
1− e2

i

]
,

〈
1
r2
i

〉
= 1
a2
i

√
1− e2

i

.

(5.97)

Finally, the mean relativistic Hamiltonian is:

1
c2 〈H2〉 =

2∑
i=1

µi

− 3β2
i

c2a2
i

√
1− e2

i

+ β2
i (15− υi)

8a2
i c

2

 . (5.98)

Because the canonical Delaunay elements are defined through equation (5.10), we obtained that
the mean relativistic Hamiltonian is

1
c2 〈H2〉 =

2∑
i=1

µ5
iβ

4
i

(
− 3
c2L3

iGi
+ 15− υi

8c2L4
i

)
. (5.99)

We recall that in the secular relativistic Hamiltonian 〈H2〉, only the star-planets interactions are
considered.

To write the mean relativistic Hamiltonian in the planar Poincaré variables (5.20), we use the
relationship between the eccentricity ei and the variables Λi, η?i and ξ?i , given by

ei =

√
1−

(
1− (η?i )2 + (ξ?i )2

2Λi

)2
. (5.100)

Thus we obtain

〈H2(Λ,η?, ξ?)〉 =
2∑
i=1

µ5
iβ

4
i

8Λ4
i

15− υi − 24
(

1− (η?i )2 + (ξ?i )2

2Λi

)−1
 =

=
2∑
i=1

µ5
iβ

4
i

8Λ4
i

15− υi − 24
∞∑
j=0

1
2jΛji

(
(η?i )2 + (ξ?i )2

)j =

=
2∑
i=1

µ5
iβ

4
i

8Λ4
i

15− υi − 24
∞∑
j=0

1
2jΛji

 j∑
s=0

(
j

s

)
(η?i )2s(ξ?i )2(j−s)

 ,
(5.101)

8It may be useful the following formulæ:

1
2π

∫ 2π

0

sin4 f

(1 + e cos f)2 df = 3(2− e2 − 2
√

1− e2)
2e4 ,

1
2π

∫ 2π

0

sin2 f

1 + e cos f df = 1−
√

1− e2

e4 .

.

97



where we have expanded in power series of η?, ξ? around the origin.
If we want to truncate the development to the degree d in the eccentricities, we find:

〈H2(Λ,η?, ξ?)〉 =
2∑
i=1

µ5
iβ

4
i

8Λ4
i

15− υi − 24
bd/2c∑
j=0

1
2jΛji

 j∑
s=0

(
j

s

)
(η?i )2s(ξ?i )2(j−s)

 . (5.102)

5.4.1 Relativistic precession of pericenter

With our simplifications, if we don’t consider the Newtonian interaction between the two planets,
we obtain that the secular Hamiltonian related to the relativistic correction is

〈H(L,G)〉 = −
2∑
i=1

β2
i µ

3
i

2L2
i

+ 1
c2

(
−3µ5

iβ
4
i

L3
iGi

+ µ5
iβ

4
i (15− υi)

8L4
i

)
. (5.103)

In this Hamiltonian all slow angle are cyclic; hence L and G would be integrals of motion in the
absence of mutual planetary interactions. However, they are no longer constant when we consider
the Newtonian contributions.

The equations of motion of the mean orbital coordinates thus become

dlk
dt = β2

kµ
3
k

L3
k

+ 1
c2

(
9µ5

iβ
4
i

L4
iGi

− µ5
iβ

4
i (15− υi)

2L5
i

)
.

dgk
dt = 1

c2
3µ5

iβ
4
i

L3
iG

2
i

.

dgk
dt = 0,

(5.104)

for k = 1, 2, whereas all mean momenta are constants of motions, i.e. Lk(t) = Lk(0), Gk(t) = Gk(0)
and Hk(t) = Hk(0).

We can recognize in equations (5.104) the classical relativistic effect of the pericenter precession.
Indeed, in Keplerian orbital elements, the equation (5.104) becomes:

ωgk = dgk
dt = 1

c2
3G3/2(m0 +mk)3/2

a
5/2
k (1− e2

k)
, (5.105)

which, over an averaged orbit of the k-th body of period

Tk = 2π
√

a3
k

G(m0 +mk)
, (5.106)

amount to
∆ωk = 6πG(m0 +mk)

c2ak(1− e2
k)

. (5.107)

which is the classical formula for the relativistic pericenter precession for the two-body problem
(see (2.41)). We derive it here to keep the paper self-consistent.
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5.4.2 Final form of the relativistic Hamiltonian

After some algebraic computations, the relativistic Hamiltonian in the planar Poincaré variables is
given by

Hrel(Λ,λ?,η?, ξ?;C) = H0(Λ1,Λ2) + εH1(Λ1,Λ2, λ
?
1, λ

?
2, η

?
1, η

?
2, ξ

?
1 , ξ

?
2 ;C)+

+ 1
c2 〈H2(Λ1,Λ2, η

?
1, η

?
2, ξ

?
1 , ξ

?
2 ;C)〉

(5.108)

where C is the magnitude of the total angular momentum, H0 and H1 are defined in (5.90) and
〈H2〉 is defined in (5.102).
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Chapter 6

Secular evolution in action-angle
coordinates

We have seen that the classical Hamiltonian in the planar Poincaré variables is given by1

HNew(Λ,λ,η, ξ;C) = H0(Λ1,Λ2) + εH1(Λ,λ,η, ξ;C) (6.1)

and the relativistic Hamiltonian is given by

HRel(Λ,λ,η, ξ;C) = H0(Λ1,Λ2) + εH1(Λ,λ,η, ξ;C) + 1
c2 〈H2(Λ,η, ξ;C)〉, (6.2)

where C is the magnitude of the total angular momentum, H0 is the part that describes the
Keplerian motion

H0(Λ1,Λ2) = −
2∑
j=1

G2(m0 +mj)2µ3
j

2Λ2
j

, (6.3)

and H1 and 〈H2〉 are the perturbation parts, which can be expanded in Fourier series of the angles
λ and in power series of η and ξ.

In this chapter, we want to study the equations of motion of Hamiltonians (6.1) and (6.2) using
the tools provided by Hamiltonian’s theory and by perturbation theory. In particular, the aim
is to reconstruct the evolution of the eccentricities of the planets by using analytical techniques,
extending the Laplace-Lagrange theory.

To do this, first we use the averaging principle to simplify the problem. We remember that all
extrasolar systems which we study are non-resonant and so, using the averaging principle, we can
still obtain qualitative information on the long-term changes of the slowly varying orbital elements.
Then we study the secular Hamiltonians using the perturbation method based on the Lie series
and on the Birkhoff’s normal form, which were explained in detail in chapter 4.

Previous works of Libert & Henrard (2005, 2006) for coplanar systems show that this analytical
model gives an accurate description of the behavior of planetary systems which are not close to a
mean-motion resonance. Moreover, they have shown that an expansion up to order 12 in the ec-
centricities is usually required for reproducing the secular behavior of extrasolar planetary systems.
This expansion has also been used by Beaugé et al. (2006) to successfully reproduce the motions

1For the following, we will omit all the superscripts which we used in chapter 5 to distinguish the spatial Poincaré
variables from the planar ones.
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of irregular satellites with eccentricities up to 0.7. Veras & Armitage (2007) have highlighted the
limitations of lower order expansions; using only a fourth-order expansion in the eccentricities, they
did not reproduce, even qualitatively, the secular dynamics of extrasolar planetary systems. All the
previous results have been obtained considering a secular Hamiltonian at order one in the masses.
Thus, following the works of Libert and Henrand, we decide to expand the two Hamiltonians up to
order 12 in the eccentricities.

To validate our results, we will compare our analytical integration with the direct numerical
integration.

Finally, in the case of a coplanar three-body system, we look for a criterion to determine a
priori when the relativistic corrections are important, i.e. to determine a priori when the difference
between the classical case and the relativistic case are not negligible. To do this, we analyze the
quadratic part of the classical and of the relativistic secular Hamiltonian.

6.1 The invariance of the semi-major axes according to Lagrange
and Poisson

In the case of extrasolar systems that we have considered, we have seen that the values of the
semi-major axes oscillate around a mean value. In effect, this result can be generalized to all
non-resonant planetary systems.

To do this, we look for a solution of the equations of motion of Hamiltonians (6.1) and (6.2)
using the Lindstedt method, i.e. we look for a solution which is a development of powers of ε of
the form

Λj = Λj,0(t) + εΛj,1(t) + ε2Λj,2(t) + ...

λj = λj,0(t) + ελj,1(t) + ε2λj,2(t) + ...

ξj = ξj,0(t) + εξj,1(t) + ε2ξj,2(t) + ...

ηj = ηj,0(t) + εηj,1(t) + ε2ηj,2(t) + ...

(6.4)

for j = 1, 2. In particular, the solution of the unperturbed part is elementary because the quantities
Λ0, η0, ξ0 are constants determined by the initial data, while the mean longitudes λ0(t) evolve
linearly in time

λj,0(t) = φj + νjt, νj =
G2(m0 +mj)2µ3

j

Λ3
j,0

, (6.5)

where νj are the mean motion frequencies (for simplicity we assume that the initial time is t0 = 0).
We assume for the following that the mean motion frequencies are non-resonant, i.e. that k · ν

is equal to zero if and only if k = 0.
It can be proven that the coefficients Λr, λr, ξr, ηr of εr are sum of terms of the form

Ak(Λ0,φ0,η0, ξ0) ts exp(i (k · ν) t) (6.6)

where Ak(Λ0,φ0,η0, ξ0) are functions of the initial data. These terms can be classified as

• periodic if s = 0 and k 6= 0;

• pure secular terms if s 6= 0 and k = 0;

101



• mixed secular terms if s 6= 0 and k 6= 0.

Moreover, it can be proven that

• as regard the pure secular terms, we have s < r for the function Λr(t) and s ≤ r for the
functions λr, ξr,ηr;

• as regard the mixed secular terms, we have s < r.

It is simple to prove this result in the case of the semi-major axis at the first order. Indeed, in
this case, we have

Λ̇j,1(t) = −
∑

α,β∈Z2
+

∑
k∈Z2\0

√
−1 kj cα,β,k(Λ0)ξα/20 η

β/2
0 exp[

√
−1(k · λ0)] (6.7)

and so

Λj,1(t) = −
∑

α,β∈Z2
+

∑
k∈Z2\0

kjcα,β,k(Λ0) exp(
√
−1k · φ0)

k · ν
ξ
α/2
0 η

β/2
0 exp[

√
−1(k · ν)t] =

=
∑

k∈Z2\0
Ck(Λ0, ξ0,η0,ν,φ)sin

cos((k · ν)t).
(6.8)

Then, at the first development of ε, the perturbation does not introduce systematic variations of the
semi-major axes, but only quasi-periodic variations, i.e. the time always appears as the argument
of a trigonometric function. It can be proven that the series (6.8) converges uniformly in ε if the
frequencies ν are strongly non-resonant, i.e. if they satisfy for example the Diophantine condition
(4.87).

The formal statement of the theorem is the following:

Theorem 3 (Lagrange). If there are no resonances between the mean motion frequencies of the
planets, then the semi-major axes are not subject to secular variations in the approximation of order
1 of the masses.

The Lagrange’s theorem is generalized by Poisson’s theorem:

Theorem 4 (Poisson). If there are no resonances between the mean motion frequencies of the
planets, then the functions that represent the movement of the semi-major axes do not contain pure
secular terms at least up to the second order in the masses.

Then, at the second development of ε, the values of the semi-major axes oscillate around a mean
value, but the amplitude of these oscillations may depend linearly on the time. In particular, it is
important to note that the average values of the semi-major axes remain constant at least up to
the second order in the masses.

Thus, based on these theorems and since we consider only non-resonant extrasolar systems, we
decide to simplify the problem by averaging the two Hamiltonians with respect to the fast angles
Mi (= li), for i = 1, 2. This approximation corresponds to fixing the value of Λ, that remains
constant under the flow, and thereby the semi-major axes. The averaged Hamiltonian, depending
only on the secular variables, reduces the problem to a system with 2 degrees of freedom. Thus,
assuming that no strong mean motion resonances are present and that the system is far enough
from collisions, the averaging makes it possible to reduce the number of the degrees of freedom,
and to obtain qualitative information on the long-term changes of the eccentricities.
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6.2 Secular Hamiltonians

6.2.1 Expansion of the Hamiltonians

In order to construct the first basic approximation of the normal form, we first expand the Hamil-
tonians (6.1) and (6.2) in Taylor-Fourier series.

To do this, we pick a fixed value Λ∗ for the actions Λ and we perform a translation TΛ∗ defined
as

Lj = Λj − Λ∗j , j = 1, 2. (6.9)

Obviously this is a canonical transformation that leaves the coordinates λ,η and ξ unchanged.
In particular, taking into account the result of Lagrange, we can choose a∗ as the average values

of the semi-major axes during the evolution and then we can determine Λ∗ via the formula (5.1).
Then, we expand the transformed Hamiltonians H(T )

New = HNew ◦ TΛ∗ and H
(T )
Rel = HRel ◦ TΛ∗ in

power series of L,η, ξ around the origin.
For example, the expansion of the term H0 is simple:

−
β2
jµ

3
j

2Λ2
j

= −
β2
jµ

3
j

2(Λ∗j + Lj)2 = −
β2
jµ

3
j

2
(
Λ∗j
)2

(
1 + Lj

Λ∗j

)−2

=

= −Gm0mj

(a∗j )2

∞∑
k=0

(−1)k k + 1(
Λ∗j
)k (Lj)k ,

(6.10)

where a∗j is the corresponding value of Λ∗j .
Thus, forgetting an unessential constant, we rearrange the Hamiltonians of the system as

H
(T )
New(L,λ,η, ξ) = ν∗ · L +

∞∑
j1=2

h
(Kep)
j1,0 (L) + ε

∞∑
j1=0

∞∑
j2=0

h
(New)
j1,j2

(L,λ,η, ξ) (6.11)

and
H

(T )
Rel (L,λ,η, ξ) = ν∗ · L +

∞∑
j1=2

h
(Kep)
j1,0 (L) + ε

∞∑
j1=0

∞∑
j2=0

h
(Rel)
j1,j2

(L,λ,η, ξ), (6.12)

where

• ν∗ = [ν∗1 , ν∗2 ] are the mean motion frequencies, defined as

ν∗j = ∂H0
∂Λj

∣∣∣∣
Λj=Λ∗j

=
β2
jµ

3
j

(Λ∗j )3 ; (6.13)

• the terms h(Kep)
j1,0 of the Keplerian part are homogeneous polynomials of degree j1 in the actions

L, the explicit expression of which can be determined in a straightforward manner;

• the functions h(New)
j1,j2

and h(Rel)
j1,j2

are homogeneous polynomials of degree j1 in the actions L and
of degree j2 in the secular variables (η, ξ); the coefficients of such homogeneous polynomials
do depend analytically and periodically on the angles λ;
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• if we expand H(T )
2 = H2 ◦ TΛ∗ in power series of L,η, ξ around the origin:

1
c2H

(T )
2 (L,η, ξ) = 1

c2

∞∑
j1=0

∞∑
j2=0

h
(PNew)
j1,j2

(L,η, ξ), (6.14)

where the functions h(PNew)
j1,j2

are homogeneous polynomials of degree j1 in the actions L and
of degree j2 in the secular variables (η, ξ), the relationship between h(New)

j1,j2
and h(Rel)

j1,j2
is given

by
h

(Rel)
j1,j2

= h
(New)
j1,j2

+ 1
ε · c2h

(PNew)
j1,j2

. (6.15)

The functions h(New)
j1,j2

and h
(Rel)
j1,j2

are also expanded in Fourier series of the angles λ. Let us also
recall that the coefficients of the Fourier expansion decay exponentially with |k| = |k1|+ |k2|.

In these Hamiltonians, it is simple to see that λ play the role of the fast angles, because
λ = O(1), while the semi-major axis, the argument of perihelion and the longitudes of node are
slow angles, because Λ, η, ξ = O(ε).

All the expansions were carried out using a specially devised algebraic manipulator developed by
Marco Sansottera (for details, see Giorgilli & Sansottera (2011)). In our computations we truncate
the expansion as follows. The Keplerian part is expanded up to the quadratic terms. The terms
h

(New)
j1,j2

and h
(Rel)
j1,j2

include the linear terms in the fast actions L, all terms up to degree 12 in the
secular variables (ξ,η) and all terms up to the trigonometric degree 12 with respect to the angles
λ. The choice of the limits in the expansion is uniform for all the systems that will be considered.

6.2.2 Averaging over the mean motions

Now we perform an average over the fast angles λ of the Hamiltonians H(T )
New (6.11) and H(T )

Rel (6.12).
More precisely, we calculate the averaged Hamiltonians

H(sec)(L, ξ,η) = 〈H(T )(L,λ, ξ,η)〉λ, (6.16)

where 〈X 〉 is defined in (5.91), namely we average H(T ) by removing all the Fourier harmonics
depending on the angles.

It is important to notice that the average over the fast angles λ is equivalent to distribute the
mass of each planet around its orbit and to replace the attraction of each planet by the attraction
of the ring so obtained.

Thus, the averaged Hamiltonians are

HNew(L,η, ξ) = ν∗ · L +
∞∑
j1=2

h
(Kep)
j1,0 (L) + ε

∞∑
j1=0

∞∑
j2=0
〈h(New)
j1,j2

(L,η, ξ)〉 (6.17)

and
HRel(L,η, ξ) = ν∗ · L +

∞∑
j1=2

h
(Kep)
j1,0 (L) + ε

∞∑
j1=0

∞∑
j2=0
〈h(Rel)
j1,j2

(L,η, ξ)〉. (6.18)

We recall again that if no strong mean motion resonances are present and if the system is far
enough from collisions, the secular dynamics is an accurate description of the real dynamics.
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By definition, the planetary secular normal form does not depend on the mean longitudes of
the planets λ1, λ2. As a consequence, the actions L1, L2 are constants of motion and so we set

L1 = 0, L2 = 0. (6.19)

The secular system is therefore completely described by the canonical action-angle variables ξ and
η and the two Hamiltonians take the form

HNew(η, ξ;C,Λ∗) = ε
∞∑
j2=0
〈h(New)

0,j2 (η, ξ;C,Λ∗)〉,

〈h(New)
0,j2 (η, ξ;C,Λ∗)〉 =

∑
α,β∈Z2n

+
α1+α2+β1+β2=j2

c
(New)
α,β,0 (Λ∗, C)ξαηβ,

(6.20)

and

HRel(η, ξ;C,Λ∗) = ε
∞∑
j2=0
〈h(Rel)

0,j2 (η, ξ;C,Λ∗)〉

〈h(Rel)
0,j2 (η, ξ;C,Λ∗)〉 =

∑
α,β∈Z2n

+
α1+α2+β1+β2=j2

c
(Rel)
α,β,0(Λ∗, C)ξαηβ,

(6.21)

where ξαηβ = ξα1
1 ξα2

2 ηβ1
1 ηβ2

2 and where the quantities C and Λ∗ play the role of constant parameters.
The Hamiltonians so constructed are the secular ones, describing the slow motion of the eccen-

tricities and pericenters.

6.3 Secular dynamics of the planets
In (6.20) and in (6.21), the small parameter ε (approximately the mass of the largest planet relative
to that of the star) multiplies the entire Hamiltonians. Therefore, it no longer plays the role of a
perturbation parameter separating an integrable part from its perturbation, but simply shows that
the motion described by the Hamiltonians (6.20) and (6.21) is slow.

In order to study these Hamiltonians with the tools described in chapter 4, we first have to find
an integrable approximation and a new perturbation parameter - say ε - such that, in suitable action-
angle variables p,q, the Hamiltonians (6.20) and (6.21) can be written as H0(p)+εHε(p,q, ε), with
Hε of order ε with respect to gradp(H0).

6.3.1 Averaged Hamiltonians in diagonal form

As we have seen, the expansion of the Hamiltonians contain only specific combinations of terms,
in view of the D’Alembert rules. Thus, we use the D’Alembert rules to better characterize the
developments (6.20) and (6.21).

Using the property 3 of the paragraph 5.1.1 (i.e., k1 + k2 and α1 + α2 + β1 + β2 must have the
same parity), we have that

∑2
j=1(αj + βj) must be even, because k = 0. This implies that all the

terms 〈h0,j2〉 with odd j2 vanishes. Moreover, we can neglect the term 〈h0,0〉 because it is constant.
Then, it is convenient to introduce the following quantities

H
(New)
j (η, ξ) = ε〈h(New)

0,2j+2(η, ξ;C,Λ∗)〉, H
(Rel)
j (η, ξ) = ε〈h(Rel)

0,2j+2(η, ξ;C,Λ∗)〉, (6.22)
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so that the Hamiltonians become

HNew(η, ξ;C,Λ∗) = H
(New)
0 (η, ξ) +

∞∑
j=1

H
(New)
j (η, ξ),

HRel(η, ξ;C,Λ∗) = H
(Rel)
0 (η, ξ) +

∞∑
j=1

H
(Rel)
j (η, ξ).

(6.23)

In particular, H(New)
j and H(Rel)

j are homogeneous polynomials of degree 2j + 2 in (η, ξ), for each
j ∈ N0.

Still because of D’Alembert rules, we want to show that H(New)
0 and H(Rel)

0 have the form

H
(New)
0 (η, ξ) = 1

2η · A(New)η + 1
2ξ · A(New)ξ

H
(Rel)
0 (η, ξ) = 1

2η · A(Rel)η + 1
2ξ · A(Rel)ξ

(6.24)

where A(New) and A(Rel) are real symmetric 2× 2 matrices.
For the following, we use the index 1 to indicate the innermost planet and the index 2 to indicate

the outer planet.
Using formula (5.101), it is simple to prove that the relationship between A(Rel) and A(New) is given
by:

1
2A(Rel) = 1

2A(New) −
1
c2 ·

3G3/2(m0+m1)3/2

2(a∗1)5/2 0

0 3G3/2(m0+m2)3/2

2(a∗2)5/2

 . (6.25)

Moreover, there is a canonical transformation (η, ξ)→ (x,y) such that H(New)
0 and H(Rel)

0 can
be rewritten as

H
(New)
0 (x,y) = 1

2

2∑
i=1

ω
(New)
i (x2

i + y2
i ),

H
(Rel)
0 (x,y) = 1

2

2∑
i=1

ω
(Rel)
i (x2

i + y2
i ).

(6.26)

To prove (6.24) and (6.26), we do not distinguish the classical case from the relativistic one,
and we omit for the moment the subscript and the superscript “(New)” and “(Rel)”.

Using D’Alembert rules, the general form of H0 in the planar modified Delaunay variables must
be:

H0(P,p) =
∑
α∈Z2

+
|α|=2

∑
m∈Z2

|m|=0,2

aα,m(P)α/2 cos(m · p), (6.27)

where aα,m are suitable coefficients. Taking into account the limitations of m and α, we can rewrite
(6.27) in the following form

H0(P,p) =
∑

1≤j≤k≤2
bj,k
√
PjPk cos(pj − pk) + dj,k

√
PjPk cos(pj + pk) (6.28)

where the coefficients bj,k and dj,k depending only on the constants Λ∗ and on C, namely on average
values of the semi-major axes of the planets and on the total angular momentum. Note that when
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k = j the terms in the sum become bj,jPj and dj,jPj cos(2pj). Now, using the property 2 of the
paragraph 5.1.1 (i.e., m1 + m2 = 0), we have that all coefficients dj,k in (6.28) must be equal to
zero, i.e. the Hamiltonian H0 must be in the form

H0(P,p) =
2∑
j=1

bj,jPj + b1,2
√
P1P2 cos(p1 − p2). (6.29)

Now, using the trigonometric formulæ, we can notice that

2Pj = η2
j + ξ2

j ,

2
√
P1P2 cos(p1 − p2) =

√
2P1 cos p1

√
2P2 cos p2 +

√
2P1 sin p1

√
2P2 sin p2 = η1η2 + ξ1ξ2.

(6.30)

Therefore in H0 can not appear terms with the product of one of the variables ξ with one of η;
moreover, the coefficients of the monomials ξ2

j and η2
j must be the same, as well as the coefficients

of the monomials ξ1ξ2 and η1η2 must be the same.
Thus the Hamiltonian H0 in (6.23) can be rewritten in matrix form as

H0(η, ξ) = 1
2η · Aη + 1

2ξ · Aξ (6.31)

where A is a real symmetric 2× 2 matrix.
Because A is symmetric, it admits 2 real eigenvalues which we denote with ω1 and ω2. Moreover,

A is diagonalizable by a rotation of the vectors, i.e. there exists an orthogonal matrix R such that

RTAR = Ω (6.32)

where RTR = I (I is the identity matrix) and

Ω =
[
ω1 0
0 ω2

]
. (6.33)

Now using the canonical transformation (see Lemma 4.1)

η = Rx, ξ = Ry, (6.34)

where we have used the property R = (RT )−1, the Hamiltonian (6.31) can be rewritten as

H0(x,y) = 1
2

2∑
i=1

ωi(x2
i + y2

i ) (6.35)

which is trivially integrable, because it is the Hamiltonian of a system of 2 harmonic oscillators.
We can rewrite the Hamiltonians (6.23) in the new canonical variables (x,y) defined in (6.34)

as

HNew(x,y;C,Λ∗) = H
(New)
0 (x,y) +

∞∑
j=1

H
(New)
j (x,y),

HRel(x,y;C,Λ∗) = H
(Rel)
0 (x,y) +

∞∑
j=1

H
(Rel)
j (x,y)

(6.36)
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where

H
(New)
0 (x,y) = 1

2

2∑
i=1

ω
(New)
i (x2

i + y2
i ), H

(Rel)
0 (x,y) = 1

2

2∑
i=1

ω
(Rel)
i (x2

i + y2
i ). (6.37)

The origin (ξ,η) = (0,0) is an elliptic equilibrium point2, and, in the original variables ξ and
η, the solutions of the equations of motion given by the Hamiltonians H(New)

0 and H(Rel
0 are

ξj(t) =
2∑

k=1
Mj,k cos(ωkt+ φk), ηj(t) =

2∑
k=1

Nj,k cos(ωkt+ ψk) (6.38)

for j = 1, 2, where Mj,k, Nj,k, φk and ψk depend at this level - i.e. considering only the H0 part of
the secular Hamiltonian - only on the semi-major axis of the planets, i.e. only on the initial data
ξ(0) and η(0). This is usually known as the Lagrange-Laplace solution for the secular planetary
motion.

6.3.2 Use of action-angle variables

In order to study the Hamiltonians (6.36), we have to introduce suitable action-angle variables Φ,ϕ
and a new perturbation parameter - say ε - such that the Hamiltonians (6.36) can be written in
the form (4.40).

The lack of a perturbation parameter is just a trivial matter, because the perturbation parame-
ter3 ε is easily replaced by the distance from the origin. Indeed, if we consider the dynamics inside
a polydisk ∆ρR with center of the origin of R2n defined as

∆ρR = {(x,y) ∈ R2n |x2
j + y2

j ≤ ρ2R2, j = 1, ..., n} (6.39)

where R is a positive number and ρ > 0 being a parameter, then the homogeneous polynomial
Hs(x,y) is of order O(ρ2s+2), so ρ plays the role of perturbation parameter.

To introduce the power expansion in ε, we do a scaling transformation

xj =
√
εx′j , yj =

√
εy′j (6.40)

which is not canonical, but preserves the canonical form of the equations if the new Hamiltonian
is defined as

H ′(x′,y′;C,Λ∗) = 1
ε
H(x,y;C,Λ∗)

∣∣∣∣
x=
√
εx′,y=

√
εy′
. (6.41)

The Hamiltonians (6.36) become

H ′(x′,y′;C,Λ∗) = H
′ (New)
0 (x′,y′) +

∞∑
j=1

εjH
′ (New)
j (x′,y′),

H ′rel(x′,y′;C,Λ∗) = H
′ (Rel)
0 (x′,y′) +

∞∑
j=1

εjH
′ (Rel)
j (x′,y′).

(6.42)

2A point of equilibrium is of elliptic type when the eigenvalues of the system of differential equations linearized in
the neighborhood of equilibrium are all pure imaginary.

3While in the original planetary problem the natural perturbation parameter ε is the largest planetary mass
relative to that of the star, in the secular problem the natural perturbation parameter ε becomes the square of the
largest value assumed by the planetary eccentricities during the secular evolution. Indeed, it is simple to prove that
if the eccentricities are small, the size of terms H(New)

j and H(Rel)
j with j ≥ 1 (which play the role of a perturbation

in (6.36)), relative respectively to H(New)
0 and H(Rel)

0 is of order [maxk ek]2j .
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where

H
′ (New)
j (x′,y′) = H

(New)
j (x,y)

∣∣∣∣
x=x′,y=y′

, H
′ (Rel)
j (x′,y′) = H

(Rel)
j (x,y)

∣∣∣∣
x=x′,y=y′

. (6.43)

The scaling transformation (6.40) introduces in the Hamiltonians the power expansion in ε. This
means that the natural reordering of the power series as homogeneous polynomials corresponds
exactly to the use of a parameter, and, for this reason, in the following we continue to use the
Hamiltonians in the form (6.36).

Now the classical way to proceed is to introduce the canonical transformation to action-angle
variables

xj =
√

2Φj cosϕj , yj =
√

2Φj sinϕj (6.44)

for j = 1, 2. The Hamiltonians (6.36) become

H(Φ,ϕ;C,Λ∗) = ω(New) ·Φ +
∞∑
j=1

εjH
(New)
j (Φ,ϕ),

Hrel(Φ,ϕ;C,Λ∗) = ω(Rel) ·Φ +
∞∑
j=1

εjH
(Rel)
j (Φ,ϕ)

(6.45)

where

H
(New)
j (Φ,ϕ) =

∑
α∈Z2

+
|α|=j

∑
k∈K⊂Z2

c
(New)
α,k Φα1

1 Φα2
2 exp(

√
−1(k ·ϕ)),

H
(Rel)
j (Φ,ϕ) =

∑
α∈Z2

+
|α|=j

∑
k∈K⊂Z2

c
(Rel)
α,k Φα1

1 Φα2
2 exp(

√
−1(k ·ϕ)),

(6.46)

where c(New)
α,k and c(Rel)

α,k are suitable coefficients, |α| = α1 + α2 and where K is a finite subset of Z2

defined as

K = {k ∈ Z2 | kl ∈ {−2αl,−2αl + 2, ..., 2αl − 2, 2αl} for l = 1, 2}. (6.47)

In the new action-angle variables Φ,ϕ, the secular Hamiltonians (6.45) have the form required
to be studied with the tools discussed in chapter 4.

6.4 Secular evolution in action-angle coordinates
The secular Hamiltonians (6.45) have the form of a perturbed system of harmonic oscillators, and
thus we can construct a Birkhoff normal form, by means of Lie series. Finally, an analytical integra-
tion of the action-angle equations will allow us to check the accuracy of our secular approximation,
by comparing it to the direct numerical integration done in chapter 3.

Because the classical and relativistic Hamiltonian (6.45) have the same shape, in the following
we do not distinguish the two cases and will consider the following Hamiltonian

H(Φ,ϕ;C,Λ∗) = ω ·Φ +
∞∑
j=1

Hj(Φ,ϕ), (6.48)
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where
Hj(Φ,ϕ) =

∑
α∈Z2

+
|α|=j

∑
k∈K⊂Z2

cα,kΦα1
1 Φα2

2 exp(
√
−1(k ·ϕ)) (6.49)

and where cα,k and ω depend on the case and where K is defined in (6.47).

6.4.1 Birkhoff’s normal form

The construction of the Birkhoff normal form via Lie series is explained in detail in chapter 4, thus
we recall only some facts adapted to the present context.

Let r an integer greater than 1 such that the non-resonance condition

k · ω 6= 0 (6.50)

is fulfilled for any k ∈ Z2 such that 0 ≤ |k| ≤ r + 1, where |k| = |k1|+ |k2|.
The aim is to give to the Hamiltonians the normal form at order r ≥ 1

Hr(Φr,ϕr;C,Λ∗) = ω ·Φr +
r∑
j=1

H̄
(j−1)
j (Φr) +

∞∑
j=r+1

H
(r)
j (Φr,ϕr), (6.51)

where H̄(0)
1 ≡ H̄1 and

• H̄(s−1)
s , for s = 1, ..., r, is the average of H(s−1)

s over the angles ϕ and it is a homogeneous
polynomial of degree s in Φr;

• the un-normalized remainder termsH(r)
s , where s > r, are homogeneous polynomials of degree

s+ 1 in Φr and they depend on the angles ϕr.

To give to the Hamiltonians the normal form (6.51) at order r, we proceed by induction.
Assuming that the Hamiltonian is in normal form up to a given order s, with s < r, which is
trivially true for s = 0. Using the algorithm of Lie series transform, we can calculate the new
Hamiltonian as

Hs+1 = exp(Lχs+1)Hs (6.52)

and the new coordinates (Φs+1,ϕs+1) are given by

Φs+1 = exp(Lχs+1)Φs,

ϕs+1 = exp(Lχs+1)ϕs.
(6.53)

The generating function χs+1(Φs+1,ϕs+1) is determined by solving the following equation{
ω ·Φs+1, χs+1

(
Φs+1,ϕs+1

)}
+H

(s)
s+1

(
Φs+1,ϕs+1

)
= H̄

(s)
s+1

(
Φs+1

)
. (6.54)

If the condition (6.50) is satisfied, χs+1 is well defined and analytic because the Fourier expansion
of H(s)

s+1 contains only a finite number of terms.
Let us remark that the Birkhoff normal form is not always convergent at high order, especially

when the eccentricities are significant or the system is too close to a mean-motion resonance.
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Assume that the non-resonance condition (6.50) is satisfied up to an order r + 1 large enough
and suppose we have constructed the normal form (6.51) to order r. Thus the remainder R(r)

R(r)(Φr,ϕr) =
∞∑

j=r+1
H

(r)
j (Φr,ϕr) (6.55)

is “small enough” and we can neglect it.
In this way, we obtain the optimal normal form at order r

Hr(Φr;C,Λ∗) = ω ·Φr +
r∑
j=1

H̄
(j−1)
j (Φr), (6.56)

which is trivially integrable. Indeed the equations of motion for the truncated Hamiltonian are

Φ̇r
j = 0, ϕ̇rj = ∂Hr

∂Φr
j

= ωj +
r∑
l=1

∂H̄
(l−1)
l

∂Φr
j

, (6.57)

for j = 1, 2.

6.4.2 Analytical integration

Using the equations in (6.57), we can compute the long-term evolution on the secular invariant
torus, namely

Φr
j(t) = Φr

j(0), ϕrj(t) = ϕrj(0) + t
∂Hr

∂Φr
j

(Φr(0)), (6.58)

for j = 1, 2.
Now we have to come back to the original variables (Φ,ϕ). As we have seen, the inverse of the

transformation (6.53) is

Φs(t) = exp(−Lχs+1)Φs+1(t),
ϕs(t) = exp(−Lχs+1)ϕs+1(t),

(6.59)

where χs+1 = χs+1(t) is a function of time, and so the relationship between (Φ(t),ϕ(t)) and
(Φr(t),ϕr(t)) is given by

Φ(t) = exp(−Lχ1(t)) ◦ ... ◦ exp(−Lχr(t))Φ
r(t),

ϕ(t) = exp(−Lχ1(t)) ◦ ... ◦ exp(−Lχr(t))ϕ
r(t).

(6.60)

6.5 Application to some extrasolar systems
Using the method described previously, we can calculate the evolution of (Φ(t),ϕ(t)) both in the
classical case than in the relativistic one.

Now we have to come back to the original orbital elements, and in particular we are interested in
the evolution of the eccentricities. It is simple to prove that the relationship between the eccentricity
e and (Φ,ϕ) is given by

ei(t) =

√√√√1−
(

1− η2
i (t) + ξ2

i (t)
2Λ∗i

)2

, (6.61)
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for i = 1, 2, where

η(t) = Rx(t), xi =
√

2Φi cosϕi,
ξ(t) = Ry(t), yi =

√
2Φi sinϕi,

(6.62)

and where the matrix R is defined in (6.34).
Thus, the analytical integration via normal form actually reduces to a transformation of the

initial conditions to secular action-angles coordinates, the computation of the flow at time t in
these coordinates, followed by a transformation back to the original orbital elements.

We apply this method to the extrasolar systems that we have studied in chapter 3. In particular,
after having constructed the secular approximation, we decide to construct a Birkhoff normal form
up to order r = 5, which corresponds to taking into account the secular variables up to order 12 4.
For simplicity we set the average values of the semi-major axes (that we remember are fixed) equal
to their initial values.

The results are shown in Figure 6.1: the red curve represents the evolution of the eccentricity in
the classical case, while the blue curve represents the evolution of the eccentricity in the relativistic
case. Thanks to the speed semi-analytical integration, we are able to get the system dynamics on
longer time than in the numerical case.

As expected, the differences between the classical case and the relativistic case are similar to
those found in the case of numerical integration.

6.5.1 Comparison between semi-analytical integration and direct numerical in-
tegration

To validate our results, we will compare our semi-analytical integration with the direct numerical
integration. The results are shown in Figure 6.2: the red curve represents the evolution of the
eccentricity in the classical case obtained via numerical integration, the blue curve the relativistic
case via numerical integration, the green curve the classical case via semi-analytical integration
and, finally, the yellow curve the relativistic case via semi-analytical integration.

As one can see, the results obtained with the two methods are in agreement. In particular,
although the truncations of series expansions involved in the construction of the secular system are
made without estimates of the remainders, the dynamics of the full system is well represented by
the dynamics of the secular system.

The main difference between the two methods is in the running time of the programs to achieve
the results: the semi-analytic integration in fact turns out to be much faster than numerical in-
tegration. The execution times of the programs used for the numerical and the semi-analytical
integration of the equations of motion are given in Table 6.1 (note that the final integration times
and the integration step size are different for the various extrasolar systems). On the other hand,
in the case of semi-analytical integration, the use of the averaging principle to simplify the problem
is justified only if we consider non-resonant systems.

Finally, it would certainly be desirable to compare the dynamics obtained with the numerical
method and that obtained by the semi-analytic method on longer time, but this would require a
considerable amount of CPU time which we have not.

4We remember that Libert & Henrard have shown that an expansion up to order 12 in the eccentricities is usually
required for reproducing the secular behavior of extrasolar planetary systems which are not close to a mean-motion
resonance.
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(a) Eccentricity planet HD 190360 b (b) Eccentricity planet HD 190360 c

(c) Eccentricity planet HD 11964 b (d) Eccentricity planet HD 11964 c

(e) Eccentricity planet HD 169830 b (f) Eccentricity planet HD 169830 c
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(g) Eccentricity planet HD 12661 b (h) Eccentricity planet HD 12661 c

(i) Eccentricity planet BD 082823 b (j) Eccentricity planet BD 082823 c

(k) Eccentricity planet HIP 5158 b (l) Eccentricity planet HIP 5158 c

Figure 6.1: Comparison of the evolution of the eccentricity in the classical case and in the relativistic
one (semi-analytical integration).
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(a) Eccentricity planet HD 190360 b (b) Eccentricity planet HD 190360 c

(c) Eccentricity planet HD 11964 b (d) Eccentricity planet HD 11964 c

(e) Eccentricity planet HD 169830 b (f) Eccentricity planet HD 169830 c
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(g) Eccentricity planet HD 12661 b (h) Eccentricity planet HD 12661 c

(i) Eccentricity planet BD 082823 b (j) Eccentricity planet BD 082823 c

(k) Eccentricity planet HIP 5158 b (l) Eccentricity planet HIP 5158 c

Figure 6.2: Comparison of the evolution of the eccentricity obtained in different way, i.e. via
numerical integration and via semi-analytical integration. See text for more details.
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Table 6.1: The following tables list the execution times of the programs used for the numerical
and the semi-analytical integration of the equations of motion (see text for more details).

• HD 190360
Analytical Integration (Classical and Relativistic case): 59.2 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
1 h 22 min 37.0 sec 10 h 31 min 27.0 sec 6 h 43 min 20.8 sec

• HD 11964
Analytical Integration (Classical and Relativistic case): 59.2 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
41 min 20.4 sec 5 h 16 min 2.0 sec 3 h 21 min 59.8 sec

• HD 169830
Analytical Integration (Classical and Relativistic case): 36.7 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
3 min 19.8 sec 25 min 15.8 sec 16 min 12.9 sec

• HD 12661
Analytical Integration (Classical and Relativistic case): 36.7 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
3 min 19.8 sec 25 min 15.8 sec 16 min 12.9 sec

• BD 082823
Analytical Integration (Classical and Relativistic case): 41.0 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
1 h 22 min 36.6 sec 10 h 33 min 16.2 sec 6 h 43 min 7.9 sec

• HIP 5158
Analytical Integration (Classical and Relativistic case): 41.0 sec
Numerical Integration:

Classical case Relativistic case Simplified relativistic case
16 min 39.0 sec 2 h 6 min 19.0 sec 1 h 21 min 4.5 sec
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6.6 A priori criterion to determine the importance of the rela-
tivistic correction

We would like to find a criterion to determine a priori when the relativistic corrections are important,
i.e. to determine a priori when the difference between the classical case and the relativistic case
are not negligible.

To do this, the idea is to analyze the quadratic part of the classical secular Hamiltonian and
of the relativistic secular one. Indeed, if there are significant differences among the coefficients in
cases where relativistic effects are important and, vice-versa, if there are minimal differences among
the coefficients in cases where relativistic effects are negligible, we can find the searched criteria
relying only on the quadratic part of the secular Hamiltonians.

In particular, we remember that if H(New)
0 and H

(Rel)
0 are the quadratic parts of the secular

Hamiltonians (6.23)-(6.24):

H
(New)
0 (η, ξ) = η ·A(New)η + ξ ·A(New)ξ

H
(Rel)
0 (η, ξ) = η ·A(Rel)η + ξ ·A(Rel)ξ,

(6.63)

then A(New) and A(Rel) are real symmetric 2× 2 matrices such that:

A(Rel) = A(New) −
1
c2 ·

3G3/2(m0+m1)3/2

2(a∗1)5/2 0

0 3G3/2(m0+m2)3/2

2(a∗2)5/2

 , (6.64)

where we use the index 1 to indicate the innermost planet and the index 2 to indicate the outer
planet. It is easy to see the that the coefficients of ξ1ξ2 and η1η2 are the same both in the classical
and in the relativistic case. Moreover, it is simple to prove that the unit of measurement of A(Rel)
and A(New) is yr−1 (where yr denotes the year).

If we denote by A(1) the coefficient of ξ2
1 and η2

1 and by A(2) the coefficient of ξ2
2 and η2

2, the
relative difference between the coefficients in the classical and in the relativistic case is given by

A
(i)
(Rel) −A

(i)
(New)

A
(i)
(Rel)

, i = 1, 2. (6.65)

The data are shown in the following tables.
As expected, in cases HD 190360, HD 11964 and BD 082823 the relative difference between the

relativistic and the classical coefficients is remarkable (e.g. the relative difference is greater than
0.45 for the coefficient of ξ2

1 and η2
1, and it is greater than 0.035 for the coefficient of ξ2

2 and η2
2),

while in the other cases the difference is negligible (e.g. the relative difference is less than 0.002).
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Table 6.2 We report here the expansion of the secular classical and relativistic Hamiltonians of
the extrasolar systems up to degree 2 in (ξ,η). Moreover, we report the relative difference between
the coefficients in the classical and in the relativistic case, given by formula (6.65).

• HD 190360

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −2.5241044053489410 · 10−6 −1.9358830497117772 · 10−5

1 1 0 0 1.7066351622958102 · 10−8 1.7066351622958102 · 10−8

0 2 0 0 −1.7320564857123492 · 10−8 −2.0570535193981765 · 10−8

0 0 2 0 −2.5241044053489410 · 10−6 1.9358830497117772 · 10−5

0 0 1 1 1.7066351622958102 · 10−8 1.7066351622958102 · 10−8

0 0 0 2 −1.7320564857123492 · 10−8 −2.0570535193981765 · 10−8

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.869614830000979
– coefficient of ξ2

2 , η2
2: 0.157991530420127

• HD 11964

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −4.6272830094286514 · 10−6 −9.0514410721029731 · 10−6

1 1 0 0 1.5492955932942727 · 10−7 1.5492955932942727 · 10−7

0 2 0 0 −1.5824755540437131 · 10−7 −1.6450650937015877 · 10−7

0 0 2 0 −4.6272830094286514 · 10−6 −9.0514410721029731 · 10−6

0 0 1 1 1.5492955932942727 · 10−7 1.5492955932942727 · 10−7

0 0 0 2 −1.5824755540437131 · 10−7 −1.6450650937015877 · 10−7

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.488779413955399
– coefficient of ξ2

2 , η2
2: 0.038046846837556

• HD 169830

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −1.3244339842965693 · 10−4 −1.3270515925390962 · 10−4

1 1 0 0 4.3051477118903886 · 10−5 4.3051477118903886 · 10−5

0 2 0 0 −4.4802688973893151 · 10−5 −4.4808982225461097 · 10−5

0 0 2 0 −1.3244339842965693 · 10−4 −1.3270515925390962 · 10−4

0 0 1 1 4.3051477118903886 · 10−5 4.3051477118903886 · 10−5

0 0 0 2 −4.4802688973893151 · 10−5 −4.4808982225461097 · 10−5

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.001972499228548
– coefficient of ξ2

2 , η2
2: 0.000140446206439
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• HD 12661

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −1.8980723258516056 · 10−4 −1.8997180723091949 · 10−4

1 1 0 0 1.3858019683402154 · 10−4 1.3858019683402154 · 10−4

0 2 0 0 −1.5827736051885459 · 10−4 −1.5828720141461170 · 10−4

0 0 2 0 −1.8980723258516056 · 10−4 −1.8997180723091949 · 10−4

0 0 1 1 1.3858019683402154 · 10−4 1.3858019683402154 · 10−4

0 0 0 2 −1.5827736051885459 · 10−4 −1.5828720141461170 · 10−4

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.000866310891905
– coefficient of ξ2

2 , η2
2: 0.000062171139986

• BD 082823

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −3.6840491507349428 · 10−5 −1.1665139285063237 · 10−4

1 1 0 0 1.4992857272466206 · 10−6 1.4992857272466206 · 10−6

0 2 0 0 −1.4419273424417406 · 10−6 −1.5973446899364618 · 10−6

0 0 2 0 −3.6840491507349428 · 10−5 −1.1665139285063237 · 10−4

0 0 1 1 1.4992857272466206 · 10−6 1.4992857272466206 · 10−6

0 0 0 2 −1.4419273424417406 · 10−6 −1.5973446899364618 · 10−6

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.684183012246392
– coefficient of ξ2

2 , η2
2: 0.097297313769455

• HIP 5158

ξ1 ξ2 η1 η2 Classical case (yr−1) Relativistic case (yr−1)
2 0 0 0 −7.2321643316479597 · 10−5 −7.2407635908971517 · 10−5

1 1 0 0 3.7796386950599819 · 10−6 3.7796386950599819 · 10−6

0 2 0 0 −2.3736218727755973 · 10−6 −2.3740222285574030 · 10−6

0 0 2 0 −7.2321643316479597 · 10−5 −7.2407635908971517 · 10−5

0 0 1 1 3.7796386950599819 · 10−6 3.7796386950599819 · 10−6

0 0 0 2 −2.3736218727755973 · 10−6 −2.3740222285574030 · 10−6

Relative difference:

– coefficient of ξ2
1 , η2

1: 0.001187617734130
– coefficient of ξ2

2 , η2
2: 0.000168640283562
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Thus we can use the quadratic part of the secular Hamiltonians, and in particular the relative
difference (6.65), to find the searched criteria.

To do this, we have to express the coefficients of A(New) in terms of the semi-major axes a∗1 and
a∗2 (where a∗1 < a∗2), and in terms of the masses of the two planets m1 and m2 and of the central star
m0. In particular, for simplicity we consider only coplanar systems, i.e. we consider only systems
in which the inclinations of the two planets are equal (i1 = i2 = 0).

The coefficients of A(Rel) are then given by (6.64).
To express the coefficients of A(New) in terms a∗1, a∗2, m0, m1 and m2, we have to calculate the

following quantity:

Hsec = 1
(2π)2

∫ 2π

0

∫ 2π

0
H1dM1dM2, (6.66)

where M1 and M2 are the mean anomalies, and H1 is the perturbation part (3.23)

H1 = p1 · p2
m0

− Gm1m2
‖ r1 − r2 ‖

. (6.67)

The development of the perturbation part H1 as a function of M1 and M2 is provided in chapter 5.
We start with the averaging of the scalar product p1 · p2. Using the fact that pi has the form

pi =
( 1
mi

+ 1
m0 +m3−i

)−1
ṙi −

mim3−i
m0 +m1 +m2

ṙ3−i (6.68)

for i = 1, 2, where ṙi is the astrocentric velocity of the i-th planet, the product p1 · p2 can be
reduced to a sum of terms of the form ṙi · ṙj . In particular, it is simple to prove that the average
of expressions of the form ṙi · ṙj is (see Brouwer & Clemence (1961) for more details):

1
(2π)2

∫ 2π

0

∫ 2π

0
ṙi · ṙjdM1dM2 = δi,ja

2
in

2
i , i, j = 1, 2, (6.69)

where ni denote mean motions of the planets and δi,j stands for the Kronecker delta. Thus, the
scalar product p1 ·p2 depends on Li only, which are integrals of the secular mode. We have therefore
shown that the scalar product p1 · p2 does not contribute to the secular dynamics of the system.

Now we have to calculate the more difficult part of the problem (see also Migaszewski and
Goździewski (2008a) for more details), i.e.

1
(2π)2

∫ 2π

0

∫ 2π

0
− Gm1m2
‖ r1 − r2 ‖

dM1dM2. (6.70)

The development of the inverse of the distance of the two planets as a function of M1 and M2 is
provided in section 5.3.3 (we consider only systems in which the inclinations of the two planets are
equal). For our purposes, it is sufficient to develop each term up to order 2 in eccentricities e1 and
e2. In addition, we decide to stop the developments up to order 6 in α, where α is the ratio of the
semi-major axis:

α = a∗1
a∗2
, α < 1. (6.71)

Basically, the problem has been reduced to the calculation of definite integrals from products of
trigonometric functions sin(x) and cos(x) in some natural powers. To integrate (6.70) term by
term, we used the mathematical software mathematica.
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The coefficient A(i)
New of ξ2

i and η2
i is given by

A
(i)
New = −m1m2

√
G(m0 +mi)

m0mia∗2
√
a∗i

[3
8α

2 + 45
64α

4 + 525
512α

6
]

+ o(α6), (6.72)

and the coefficient A(i)
Rel is given by

A
(i)
Rel = A

(i)
New −

1
c2

3G3/2(m0 +mi)3/2

2(a∗i )5/2 , (6.73)

for i = 1, 2, where α is defined in (6.71). Moreover, the coefficient of ξ1ξ2 and η1η2 is given by
√
Gm1m2
m0

((m0 +m1)(m0 +m2)
a∗1(a∗2)5

)1/4 [15
16α

3 + 105
128α

5
]

+ o(α6). (6.74)

We test the above formulæ on the extrasolar systems that we have considered. In particular,
we calculate the relative error between the coefficients Ã(i) given by formulæ (6.72)-(6.73) and the
coefficients A(i) given by Table 6.2:

A
(i)
(New) − Ã

(i)
(New)

A
(i)
(New)

,
A

(i)
(Rel) − Ã

(i)
(Rel)

A
(i)
(Rel)

, i = 1, 2. (6.75)

The results are reported in Table 6.3. In all cases we have considered, the relative error is very
small both in the classical case than in the relativistic one.

Using (6.72) and (6.73), the relative difference (6.65) between the coefficients in the classical
and in the relativistic case is given by

A
(i)
(Rel) −A

(i)
(New)

A
(i)
(Rel)

= 3Ga∗2m0mi(m0 +mi)
2c2(a∗i )2m1m2D(α) + 3Ga∗2m0mi(m0 +mi)

, (6.76)

for i = 1, 2, where
D(α) = 3

8α
2 + 45

64α
4 + 525

512α
6. (6.77)

Comparing the data in Table 6.2 and the corresponding plots in Figure 6.1, we think that,
in the case of a coplanar three-body system, the relativistic correction on the i-th planet may be
important if the relative difference is greater than δ, i.e. if

3Ga∗2m0mi(m0 +mi)
2c2(a∗i )2m1m2D(α) + 3Ga∗2m0mi(m0 +mi)

> δ, (6.78)

where

• if A(i)
(New) < −1× 10−5 yr−1, then δ = 0.0025;

• if −1× 10−5 yr−1 ≤ A(i)
(New) < −5× 10−7 yr−1, then δ = 0.01;

• if −5× 10−7 ≤ A(i)
(New) yr

−1, then δ = 0.025.
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It is also simple to see that the condition (6.78) is equivalent to the condition

c2(a∗i )2m1m2D(α)
Ga∗2m0mi(m0 +mi)

<
3
2

(1
δ
− 1

)
. (6.79)

The criterion introduced above is clearly heuristic and quite rough, nevertheless we think it is useful
to discriminate the cases in which the relativistic corrections are important from those in which
they are not.

Table 6.3 We report here the relative error (6.75) between the coefficient A(i) of ξ2
i and η2

i

given in Table 6.1, and the coefficient Ã(i) given by formula (6.72)-(6.73).

• HD 190360

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.000682507716323 0.000695726790969

coefficient of: ξ2
2 , η2

2 0.000682510876349 0.000684913514844

• HD 11964

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.000683021126193 0.000690200202867

coefficient of: ξ2
2 , η2

2 0.000683022224624 0.000683581131333

• HD 169830

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.001132737282618 0.001131879216172

coefficient of: ξ2
2 , η2

2 0.001132739159952 0.001132678064295

• HD 12661

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.004566038936478 0.004562687772306

coefficient of: ξ2
2 , η2

2 0.004566037394066 0.004565796896265

• BD 082823

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.000683617301988 0.000693258483257

coefficient of: ξ2
2 , η2

2 0.000683618178821 0.000684989416831

• HIP 5158

Classical case Relativistic case
coefficient of: ξ2

1 , η2
1 0.000690986292650 0.000690994290910

coefficient of: ξ2
2 , η2

2 0.000691025215660 0.000691026364531
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6.7 Conclusions
Except for very precise simulations, in the study of the dynamics of Solar system, we just deal
with Newtonian mechanics and the relativistic effects are in general not taken into account in orbit
computations. Our planetary system is in fact mainly composed by an inner set of terrestrial low
mass planets and an outer set of giant very massive planets. The large distances between the
planets and the Sun and the fact that the masses of the planets are relatively small implies that
the effects of relativity are so small as not to worry about it. Moreover, the perturbations due to
the larger asteroids are almost always much more significant than the relativistic corrections.

When the relativistic effects are taken into account, only the effects due to the Sun are considered
and, also in this case, the secular relativistic effects generated by the Sun are appreciable only for
the argument of the perihelion and mean anomaly of the inner Solar system. Thus, in the case of
the Solar system, Newtonian theory provides very reliable results.

Conversely, these facts are not true in general in the case of extrasolar systems. As we have
seen, in general the relativistic corrections due to the star are important and, in some cases,
are indispensable (specially when semi-major axes are of the order of 10−1 AU or less) in orbit
computations of extrasolar planets.

After the discovery in 1995 of the first extrasolar planet in orbit around a main-sequence star,
the number of known-extrasolar planets did not cease to grow. The planets so far discovered are
big and most of them have orbits close to the central stars. By virtue of their small semi-major
axes and high eccentricities, extrasolar planetary systems with multiple planets allow for General
Relativity to exhibit much more pronounced effects than in the case of the Solar system. As a
result, these systems provide a new test of General Relativity.

In this thesis, we have analyzed the long-term evolution of several exoplanetary systems both
in the classical case than in the relativistic one. We have tried to evaluate how General Relativity
theory affects the orbital dynamics of the extrasolar system, in the limit of point masses, by means
of a series of numerical tests. In particular, we have limited ourselves to consider coplanar and
non-resonant extrasolar systems, consist of a central star and two planets orbiting around it.

To describe the approximate dynamics of a system of “point-like masses” due to their mutual
gravitational interactions, including general relativistic effects, we use the Einstein-Infeld-Hoffmann
Hamiltonian (up to the 1/c2 approximation). However, it is important to remember that, in general,
the corrections provided by the EIH model to the classic model still do not cover all physics
governing the dynamics of such systems.

Thanks to numerical integration of the Hamilton’s equations, we note that, in some of the
cases studied, the difference between predictions of General Relativity and by the classical model
are significant, while in some other cases both theories give practically the same outcome. As
expected, looking at the element of the examined systems, we may conclude that the corrections
become very important for systems with the innermost planet close to the star, with other body
relatively distant. The results show in fact that the relativistic effects can accumulate over time
to induce substantial changes in the dynamics. In particular, we find that for the systems HD
190360, HD 11964 and BD 082823 the relativistic corrections are important, while for the systems
HD 169830, HD 12661 and HIP 5158 the relativistic corrections are so small to be negligible.

Moreover, we note that, where the relativistic effects are important, they seem to provide
“stability” to the system. These results are in agreement with those obtained by Laskar (Laskar
(2008)) in the case of the Solar system. Quoting Laskar: (in the case of the inner Solar system) “The
difference of behavior of the secular system with and without general relativity (GR) is impressive.
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[...] The contribution of GR is thus essential in order to ensure the relative stability of Mercury.”
Thus, following the results here presented, it seems that relativistic corrections are not unavoid-

able for all dynamical studies, but they are necessary for the precise dynamical modeling of close
extrasolar planets. Quoting Sitarski (1983): “...it seems that in all the modern investigations it is
the very time to replace Newtonian equations of motions by those resulting from general relativity
theory”.

The major defect of the numerical integration is that it is CPU consuming and that the time
required to integrate a system is very long. For this reason, we have therefore looked for a “semi-
analytical” integrations of the Hamiltonian equations, using the tools provided by Hamiltonian
system and by perturbation theory.

On the other hand, the relativistic Hamiltonian turns out to be uncomfortable to be treated
using the canonical perturbation theory. Thus, we have looked for a simplification of the relativistic
Hamiltonian, skipping the relativistic correction due to the mutual interactions of the two planetary
masses. In particular, we assume that the mutual interactions between the star and the two planets
are of relativistic type (i.e. we consider the relativistic corrections to the Newtonian gravity) and
that the mutual interaction between the two planets is only of Newtonian type (i.e. we skip the
relativistic corrections caused by the two planetary masses). As we have seen, this assumption leads
to a substantial simplification to the relativistic Hamiltonian and, at the same time, the dynamic
obtained by this simplified Hamiltonian is very similar to that described in the real one, at least
numerically in the systems that we have considered (only in some particular cases the relativistic
effects generated by the planets seem to have some importance).

Then, starting from the classical and the (simplified) relativistic secular Hamiltonians, we have
computed a high-order Birkhoff normal form via Lie series, introducing action-angle coordinates
for the secular variables. This enabled us to compute analytically the evolution on the secular
invariant torus and to obtain the long-term evolution of the eccentricities.

To obtain the secular Hamiltonians, we have simple performed an average over the fast angles
of the Hamiltonians, which corresponds to fixing the values of the semi-major axes. It is important
to remember that, to obtain qualitative information on the long-term changes of the slowly varying
orbital elements using the averaging principle, the extrasolar systems must be non-resonant.

As a result, for all the systems that are not too close to a mean-motion resonance, we have
shown an excellent agreement with the direct numerical integration of the full three-body problem.

Furthermore, evaluating the difference between the quadratic part of the secular classical Hamil-
tonian and the secular relativistic Hamiltonian, we have set up a simple (and rough) criterion to
discriminate between the cases in which the relativistic corrections are important from those in
which they are not. In particular, in the case of a coplanar three-body system, we think that the
relativistic corrections on the i-th planet may be important if

c2a2
im1m2D(α)

Ga2m0mi(m0 +mi)
<

3
2

(1
δ
− 1

)
,

where D(α) is given in (6.77) and δ is given in section 6.6.
Let us remark that these results could be extended to the spatial case with minor changes.

Indeed, after the reduction of the angular momentum, the starting Hamiltonian would have exactly
the same form as H(T )

New and H(T )
Rel , defined in (6.11)-(6.12).

Finally, a natural extension to the present work would be the study of the secular relativistic
evolution of systems that are close to or in a mean-motion resonance. The effects of mean-motion
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resonances are in fact of great impact on the long-term behavior of the exoplanetary system.
Indeed the terms of the perturbation associated to mean-motion resonances have small frequencies
and thus influence the secular behavior of the system. For this reason, a good description of the
secular dynamics of an exoplanetary system should include a careful treatment of the influence
of mean-motion resonances on the long-term evolution. Therefore, it is necessary to replace the
classical circular approximation with a torus which is invariant up to order two in the masses,
i.e. to replace the first order averaged Hamiltonian with the one at order two in the masses. For
more details of the benefit of a second order approach, see for example Laskar (1988), Sansottera,
Locatelli and Giorgilli (2013) and Libert and Sansottera (2013).

Moreover, having such a good analytical description of the orbits both in the classical than in
the relativistic case, we can also study the effective stability of extrasolar planetary systems in the
framework of the KAM and Nekhoroshev theories.
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Appendix A

Summary of differential geometry

A manifold M is a topological space which satisfies the Hausdorf criterion, i.e. such that each point
of M has an open neighborhood which has a continuous 1-1 map onto an open set of Rn, where n
is the dimension of the manifold.

A chart is a homeomorphism h from D ⊂ M to U ⊂ Rn which assigns a n-uple of coordinates
(xi) to a point p ∈ D:

h : D → U,

p 7→ h(p) = (x1, ..., xn).
(A.1)

An atlas is a collection of charts whose domains cover the entire manifold.
The tangent space Vp of a manifold M in a point p is the vector space of all derivations. A

derivation v is a map from the space Fp of C∞ functions in p into the real numbers

v : Fp → R,
f 7→ v(f).

(A.2)

which is linear and which satisfies the Leibniz rule. A coordinate basis of the tangent vector space
is given by the partial derivate ∂i, i.e. a tangent vector v can be expanded in this basis v = vi∂i
and v(f) = vi∂i(f) for each f ∈ F .

A dual vector w is a linear mapping assigning a real number to vector

w : V → R,
v 7→ w(v).

(A.3)

The space of dual vectors to a tangent vector space V is the dual space V ∗. Specifically, the
differential of a function f ∈ F is a dual vector defined by

df : V → R,
v 7→ df(v) = v(f).

(A.4)

Accordingly, the differential of the coordinate function xi form a basis {dxi} of the dual space,
which is orthonormal to the coordinate basis {δj} of the tangent space, i.e. dxi(δj) = δj(dxi) = δij .

A tensor T of rank (r, s) on M at p is a multi-linear mapping of r dual vector and s vectors
into the real number:

T :
r︷ ︸︸ ︷

V ∗p × ...× V ∗p ×
s︷ ︸︸ ︷

Vp × ...× Vp → R. (A.5)
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We find that vectors are (1, 0) tensors, duals are (0, 1) tensors, and scalars are (0, 0) tensors. A
basis for tensors of arbitrary rank (r, s) is obtained by the tensor product of suitably many elements
of the bases {δi} of the tangent space and {dxj} of the dual space:

T = T i1,...,irj1,...,jsδi1 ⊗ ...⊗ δir ⊗ dxj1 ⊗ ...⊗ dxjs . (A.6)

The metric tensor g = gikdxi ⊗ dxj is a symmetric, non degenerate tensor of rank (0, 2), i.e
it satisfies g(x, y) = g(y, x) and g(x, y) is equal zero for all x only if y = 0. Since the metric is
non-degenerate and linear, it must be one-to-one and onto, and hence invertible. We can define the
inverse metric as a (2, 0) tensor gik such that gikgkj = δij . The metric tensor and inverse metric
tensor is also used to raise (e.g. vi = gijvj) and lower (e.g. vi = gijv

j) the indices of arbitrary
tensors. Once we have endowed a manifold with a metric, we can define an associated scalar product
between two vectors on the tangent space as x · y = g(x, y) = gikx

iyk.
A pseudo-Riemannian manifold (M, g) is a differentiable manifold M equipped with a non-

degenerate, smooth, symmetric metric tensor g which needs not be positive-definite (unlike a Rie-
mannian manifold), but must be non-degenerate. The signature (p, q) of a pseudo-Riemannian
metric is the number (counted with multiplicity) of positive (p), negative (q) and zero eigenval-
ues of the real symmetric matrix gik. A Lorentzian manifold is an important special case of a
pseudo-Riemannian manifold in which the signature of the metric is (1, n− 1).

A basic principle of general relativity is that space-time can be modeled as a 4-dimensional
Lorentzian manifold of signature (3, 1) or, equivalently, (1, 3), where the Riemann tensor g repre-
sents the curvature of the space-time due to the presence of matter (energy).

A curve γ is defined as a map from some interval I ⊂ R to the manifold

γ : I ⊂ R→M,

t 7→ γ(t).
(A.7)

Its tangent vector is γ̇(t).
The covariant derivative (or a linearly connection) ∇ on a manifold M maps a pair of vectors

to a vector

∇ : V × V → V,

(x, y) 7→ ∇xy,
(A.8)

which is linear and which satisfied the following conditions for all f ∈ F :

• the covariant derivative of a function f is its differential: ∇vf = vi∇if = v(f) = df(v);

• ∇fxy = f∇xy and ∇x(fy) = f∇xy + ydf(x).

Due to the linearity, it is completely specified by the covariant derivatives of the basis vectors

∇δiδj = Γkijδk,
∇xy = xk(δk(yi) + Γi kjvj)δi.

(A.9)

The functions Γkij are called connection coefficients or Christoffel symbols (they are not tensors).
A vector v is said to be parallel transported along γ if ∇γ̇v = 0. A geodesic curve is defined as

a curve whose tangent vector is parallel transported along γ, i.e. ∇γ̇ γ̇ = 0 (for geodesic equation
see (2.10)).
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The covariant derivative can also be extended for tensors. A covariant derivative on a manifold
M is a map∇ from smooth (n,m) tensor T i1,...,inj1,...jm to smooth (n,m+1) tensor∇jm+1T

i1,...,in
j1,...jm

that is linear and satisfies the following conditions:

• it obeys the Leibniz rule for derivatives;

• it commutes with contraction.

The torsion of a connection is defined by

T : V × V → V,

(x, y) 7→ T (x, y) = ∇xy −∇yx− [x, y],
(A.10)

where [x, y] is the Lie derivative. The torsion vanishes if and only if the connection is symmetric.
It can be proven that the Einstein equivalence principle implies that T = 0.

Let (M, g) be a pseudo-Riemannian manifold. Given two vectors u,w, we require that the scalar
product g(u,w) is unchanged if we deliver u and w along any curve, i.e. ∇vg(u,w) = 0 for all v.
The covariant derivative ∇ is called a Levi-Civita connection if it preserves the metric (i.e. ∇g = 0)
and it is torsion-free (i.e. T = 0). In this case, the Christoffel symbols are completely determined
by the metric:

Γlij = Γlji,

Γlij = 1
2g

lk (∂igjk + ∂jgki − ∂kgij) .
(A.11)

The curvature is the amount by which a geometric object deviates from being flat. The curvature
is described by the general Riemann curvature tensor, which measures the extent to which the
metric tensor is not locally isometric to a Euclidean space. The Riemann tensor on M is the (1, 3)
tensor Rijkl such that for any cobasis dual field ωj on M Rijklωi = −[∇k,∇l]ωj . The components
of the Riemann tensor are given by

Rijkl = ∂kΓilj − ∂lΓikj + ΓmljΓikm − ΓmkjΓilm. (A.12)

The Riemann tensor obeys three important symmetries

Rijkl =−Rjikl = −Rijlk,
Rijkl =Rklij ,

(A.13)

which reduces its 256 components in four dimensions to 21. In addition, the Bianchi identity holds:

Ri[jkl] = 0,
Rml[ki;j] = 0.

(A.14)

The first Bianchi identity reduces the number of independent components of the Riemann tensor
to 20. The contraction of the Riemann tensor over its first and third indices is the Ricci tensor,
thus its components are Rik = Rmimk = Rik. A further contraction yields the Ricci scalar R = Rii.

The Einstein tensor is the combination

Gik = Rik −
1
2Rgik. (A.15)

Contracting the second Bianchi identity, we find the contracted Bianchi identity ∇iGik = 0.
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Energy-momentum tensor

The energy-momentum tensor (or stress-energy tensor) is a tensor T of type (2, 0) that describes
the density and flux of energy and momentum in space-time. In general relativity, the stress-energy
tensor is symmetric, i.e T ik = T ki and it satisfies the equation of continuity

∇iT ik = 0. (A.16)

The component T 00 is the density of relativistic mass, i.e. the energy density divided by the speed of
light squared. The component T 0α is the density of the αth component of linear momentum, i.e. it
describes the flux of relativistic mass (i.e. the amount of energy) through unit surface perpendicular
to the xα axis in unit time. The components Tαβ represent the stress tensor (denoted by σαβ),
i.e. the flux of αth component of linear momentum passing per unit time through unit surface
perpendicular to the xβ axis. In particular, Tαα(not summed) represents normal stress, which
is called pressure when it is independent of direction, while the remaining components Tαβ with
α 6= β represent shear stress.

An example is the stress-energy tensor of a system of particles. We describe their mass distri-
bution in the space using a “mass density” in the form:

µ =
∑
a

maδ(r− ra), (A.17)

where ra is the radius-vector of the particles, ma is the mass of the particle a, δ is the Dirac delta
function and the summation extends over all the particles of the system.
It can be proven that the energy momentum tensor of the system of non-interacting particles is

T ik = µc
dxi

ds

dxk

dt
= µcuiuk

ds

dt
, (A.18)

which can be rewritten as
T ik =

∑
a

macu
iukδ(r− ra). (A.19)

In general relativity the stress-energy tensor serves a role similar to that of mass distribution
in Newtonian physics; it tells space how to deform, creating what we observe as gravity.
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Appendix B

Hansen coefficients

We have seen in section 5.3.1 that the development of
(
r
a

)n
θm is(

r

a

)n
θm =

+∞∑
k=−∞

Xn,m
k (e) exp(

√
−1(k −m)M) (B.1)

where Xn,m
k (e) are the Hansen coefficients.

These coefficients are defined in the following way:

• if k 6= 0

Xn,m
k (e) = β|m−k|(1 + β2)−n−1

∞∑
s=0

P
(n)
s+max(0,k−m)(m,κ)P (n)

s+max(0,k−m)(−m,−κ)β2s (B.2)

where

β = e

1 +
√

1− e2
, κ = k

1 + β2 ,

P (n)
s (m,κ) =

r?∑
r=0

(−n+m− 1)r
(1)r

κs−r

(1)s−r
(a)0 = 1, (a)k = a(a+ 1)...(a+ k − 1) = (a+ k − 1)(a)k−1

r? =
{

min{s, n−m+ 1} if n−m+ 1 ≥ 0
s if n−m+ 1 < 0

• if k = 0

– if n ≥ −1

Xn,m
0 (e) = (−1)|m|

(n+ 2)|m|
(1)|m|

β|m|(1+β2)−n−1F (−n−1,−n+ |m|−1, 1+ |m|;β2) (B.3)

– if n < −1

Xn,m
0 (e) = (−1)|m|

(n+ 2)|m|
(1)|m|

(
e

2

)|m|
(1− e2)

n+3
2 ×

× F
(
n+ |m|+ 2

2 ,
n+ |m|+ 3

2 , 1 + |m|; e2
)
,

(B.4)

131



where F is the hypergeometric function defined as

F (a, b, c;x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k! , (B.5)

which converges if c is not a negative integer for all |x| < 1. Here, (a)k is the Pochhammer
symbol, which is defined by

(a)0 = 1, (a)k = (a+ k − 1)(a)k−1.

Expansion by Means of Lie Transform
Because the relation between the mean anomaly and the true anomaly is not trivial, we present
another algorithm by J. Henrard which can be used to transform an expansion in the true anomaly,
into one in the mean anomaly.

The idea is to transform an analytic function

F (ν, e) =
∞∑
i=0

F 0
i (ν)
i! ei (B.6)

into G(M, e) = F (ν(M, e), e). The algorithm by Henrard uses the Lie transforms method, and the
generator is

W (ν, e) = ∂ν

∂e
= 4 sin ν + e sin(2ν)

2(1− e2) = 2 sin(ν)
∞∑
i=0

e2i + 1
2 sin(2ν)

∞∑
i=0

e2i+1 =
∞∑
i=0

Wi(ν)
i! ei. (B.7)

The transformed function

G(M, e) =
∞∑
i=0

F i0(ν)
i!

∣∣∣∣∣
ν=M

ei (B.8)

is computed by the recursive formula

F ji−j(ν) = F j−1
i+1−j(ν) +

i−j∑
k=0

(
i− j
k

)
∂F j−1

i−j−k
∂ν

Wk(ν). (B.9)

For example, this algorithm can be used to transform r = r(ν, e) into r = r(M, e).
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